lod_tensor.cc 16.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
wanghuancoder 已提交
15
#include "paddle/fluid/framework/lod_tensor.h"
F
fengjiayi 已提交
16 17
#include <stdint.h>
#include <algorithm>
X
refine  
Xin Pan 已提交
18
#include "paddle/fluid/framework/version.h"
19

W
wanghuancoder 已提交
20 21 22 23 24
namespace paddle {
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle
25

26 27 28
namespace paddle {
namespace framework {

武毅 已提交
29
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
30
  os << "{";
武毅 已提交
31
  for (auto &v : lod) {
32
    os << "{";
L
Liu Yiqun 已提交
33
    bool is_first = true;
武毅 已提交
34
    for (auto &i : v) {
L
Liu Yiqun 已提交
35 36 37 38 39 40
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
41 42 43 44 45 46 47 48
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
49
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
50 51 52 53
  if (t.lod().size() > 0) {
    os << "  - lod: " << t.lod() << "\n";
  }
  os << static_cast<Tensor>(t);
Y
Yang Yang 已提交
54 55 56
  return os;
}

Q
Qiao Longfei 已提交
57 58 59 60 61 62
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
63
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
64
                 size_t elem_end) {
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  PADDLE_ENFORCE_LT(level, in.size(),
                    platform::errors::InvalidArgument(
                        "The input LoDTensor's lod level should be less than "
                        "the LoD size, but received level is %d, LoD is %s.",
                        level, in));
  PADDLE_ENFORCE_LT(
      elem_begin, elem_end,
      platform::errors::InvalidArgument(
          "The index to start slicing should be less than the index to end "
          "slicing, but received start index is %d, end index is %d.",
          elem_begin, elem_end));
  PADDLE_ENFORCE_LT(
      elem_end, in[level].size(),
      platform::errors::InvalidArgument(
          "The index to end slicing should be less than the input LoD size, "
          "but received end index is %d, LoD size is %d.",
          elem_end, in[level].size()));
82 83 84 85 86 87 88

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
89 90 91
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
92 93
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
94
  }
95 96 97 98
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
99
    for (auto &ele : res[lvl]) {
100 101 102 103 104 105
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
106
LoD ToAbsOffset(const LoD &in) {
107 108 109
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
110 111 112 113
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
114 115 116
    }
  }
  return result;
117 118
}

武毅 已提交
119
bool operator==(const LoD &a, const LoD &b) {
120 121 122 123 124
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
125 126
    const auto &a_level = a[i];
    const auto &b_level = b[i];
127 128 129 130 131 132 133 134 135 136
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
137 138
}

Y
Yan Chunwei 已提交
139 140 141 142 143 144 145
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
146
    // check: all the offsets in a level should be non-descending
S
sneaxiy 已提交
147 148
    if (!std::is_sorted(level.begin(), level.end())) {
      return false;
Y
Yan Chunwei 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
170
    // allowed).
Y
Yan Chunwei 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

193
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
194
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
195 196 197 198
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
199 200 201 202 203 204 205 206 207 208 209
    PADDLE_ENFORCE_LE(start_idx, end_idx,
                      platform::errors::InvalidArgument(
                          "The start index should be less than the end index, "
                          "but received start index is %d, end index is %d.",
                          start_idx, end_idx));
    PADDLE_ENFORCE_LT(
        end_idx, lod[level_idx].size(),
        platform::errors::InvalidArgument(
            "The end index should be less than the LoD level size, but "
            "received end index is %d, LoD level size is %d.",
            end_idx, lod[level_idx].size()));
210 211 212 213
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
214
    sub_lod.emplace_back(level_lens);
215 216 217
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
218 219

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
220 221
}

武毅 已提交
222
void AppendLoD(LoD *lod, const LoD &lod_length) {
223 224
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
225 226 227 228
      platform::errors::InvalidArgument(
          "The input LoD length should be equal to the appended LoD size, but "
          "received input LoD length is %d, actual LoD size is %d.",
          lod_length, lod->size()));
229
  if (lod->empty()) {
Y
Yang Yu 已提交
230 231 232
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
233 234
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
235
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
236
    auto &level = (*lod)[i];
237 238 239 240 241 242
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
243 244
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
245
  {  // the 1st field, uint32_t version for LoDTensor
X
refine  
Xin Pan 已提交
246 247
    os.write(reinterpret_cast<const char *>(&kCurTensorVersion),
             sizeof(kCurTensorVersion));
武毅 已提交
248
  }
249 250 251 252 253 254
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
255 256 257 258 259 260 261 262 263 264 265
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
266
  // the 3st field, Tensor
Y
Yi Wang 已提交
267
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
268 269
}

T
tangwei12 已提交
270 271 272 273 274 275 276 277 278 279
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx,
                           const size_t &seek,
                           const std::vector<int64_t> &shape) {
  {
    // the 1st field, unit32_t version for LoDTensor
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(framework::IsTensorVersionSupported(version), true,
                      platform::errors::InvalidArgument(
280
                          "Tensor version %u is not supported.", version));
T
tangwei12 已提交
281 282 283
    PADDLE_ENFORCE_EQ(
        version, 0U,
        platform::errors::InvalidArgument(
284 285
            "Deserialize to tensor failed, maybe the loaded file is "
            "not a paddle model(expected file format: 0, but %u found).",
T
tangwei12 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298
            version));
  }
  {
    // the 2st field, LoD information
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
  }
  // the 3st filed, Tensor
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx, seek, shape);
}

Y
Yancey 已提交
299 300
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
301
  {
Y
Yancey 已提交
302
    // the 1st field, unit32_t version for LoDTensor
303 304
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
T
tangwei12 已提交
305 306
    PADDLE_ENFORCE_EQ(framework::IsTensorVersionSupported(version), true,
                      platform::errors::InvalidArgument(
307
                          "Tensor version %u is not supported.", version));
T
tangwei12 已提交
308 309 310
    PADDLE_ENFORCE_EQ(
        version, 0U,
        platform::errors::InvalidArgument(
311 312
            "Deserialize to tensor failed, maybe the loaded file is "
            "not a paddle model(expected file format: 0, but %u found).",
T
tangwei12 已提交
313
            version));
武毅 已提交
314
  }
315 316
  {
    // the 2st field, LoD information
武毅 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
330
  // the 3st filed, Tensor
Y
Yi Wang 已提交
331
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
332 333
}

Y
Yang Yang 已提交
334 335
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
336 337
  PADDLE_ENFORCE_GT(places.size(), 0,
                    platform::errors::InvalidArgument(
338
                        "Place number cannot be empty when splitting."));
Y
Yang Yang 已提交
339
  check_memory_size();
340 341
  size_t batch_size =
      lod().empty() ? static_cast<size_t>(dims()[0]) : lod()[0].size() - 1;
Y
Yu Yang 已提交
342

343
  // if batch_size is 0, just return #places.size() copys of empty
344
  // tensors.
345 346 347
  if (batch_size == 0) {
    std::vector<LoDTensor> empty_results;
    empty_results.reserve(places.size());
348 349 350 351 352 353 354
    for (size_t i = 0; i < places.size(); ++i) {
      LoDTensor dst;
      dst.Resize(dims());
      dst.mutable_data(places[i], type());
      if (!lod().empty()) {
        dst.set_lod(lod());
      }
355
      empty_results.emplace_back(std::move(dst));
356
    }
357
    return empty_results;
358 359
  }

360 361 362 363 364
  auto step_width = (batch_size + places.size() - 1) / places.size();
  auto result_size = (batch_size + step_width - 1) / step_width;
  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yu Yang 已提交
365
  for (size_t i = 0; i < result_size; ++i) {
366 367 368 369
    auto begin = i * step_width;
    auto end = std::min<size_t>((i + 1) * step_width, batch_size);
    PADDLE_ENFORCE_LT(begin, end,
                      platform::errors::InvalidArgument(
370 371 372
                          "The begin index must be less than the end index, "
                          "but received begin index is %d, end index is %d.",
                          begin, end));
Y
Yang Yang 已提交
373

374
    LoDTensor dst;
Y
Yang Yang 已提交
375 376
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
377
      auto &dst_place = places[i];
Y
Yi Wang 已提交
378
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
379 380 381 382 383
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
384
      auto &dst_place = places[i];
Y
Yi Wang 已提交
385
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
386 387 388 389 390 391 392 393 394 395 396

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
397
    results.emplace_back(std::move(dst));
Y
Yang Yang 已提交
398 399
  }

Y
Yu Yang 已提交
400
  return results;
Y
Yang Yang 已提交
401 402
}

Y
Yang Yang 已提交
403
void LoDTensor::MergeLoDTensor(
404 405
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
406 407 408
  PADDLE_ENFORCE_EQ(lod_tensors.empty(), false,
                    platform::errors::InvalidArgument(
                        "The LoDTensors to be merged are empty."));
Y
Yang Yang 已提交
409

Y
Yang Yang 已提交
410
  framework::DDim new_dim = lod_tensors[0]->dims();
411
  proto::VarType::Type new_type = proto::VarType::FP32;
Y
Yang Yang 已提交
412
  framework::DataLayout new_layout = lod_tensors[0]->layout();
413 414 415 416 417 418 419 420 421
  for (auto *t : lod_tensors) {
    if (t->numel() && t->IsInitialized()) {
      new_dim = t->dims();
      new_type = t->type();
      new_layout = t->layout();
      break;
    }
  }

Y
Yang Yang 已提交
422
  LoD new_lod = lod_tensors[0]->lod();
423

Y
Yang Yang 已提交
424 425
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
426
    if (t->numel() && t->IsInitialized()) {
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
      PADDLE_ENFORCE_EQ(
          new_type, t->type(),
          platform::errors::InvalidArgument(
              "LoDTensor data type does not match, expected type is %s, actual "
              "type is %s.",
              DataTypeToString(new_type), DataTypeToString(t->type())));
      PADDLE_ENFORCE_EQ(
          new_layout, t->layout(),
          platform::errors::InvalidArgument(
              "LoDTensor layout does not match, expected layout is %s, "
              "actual layout is %s.",
              DataLayoutToString(new_layout), DataLayoutToString(t->layout())));
      PADDLE_ENFORCE_EQ(
          framework::product(new_dim) / new_dim[0],
          framework::product(t->dims()) / t->dims()[0],
          platform::errors::InvalidArgument(
              "LoDTensor dimension does not match, all dimensions except the "
              "first dimension need to be equal,"
              "but expected dimension is %s, actual dimension is %s.",
              new_dim, t->dims()));
447 448
      new_dim[0] += t->dims()[0];
    }
Y
Yang Yang 已提交
449 450

    auto &lod = t->lod();
451 452 453 454 455
    PADDLE_ENFORCE_EQ(new_lod.size(), lod.size(),
                      platform::errors::InvalidArgument(
                          "The LoD information of LoDTensor does not match, "
                          "expected LoD is %s, actual LoD is %s.",
                          new_lod, lod));
Y
Yang Yang 已提交
456 457
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
C
chengduo 已提交
458
      size_t offset = sub_lod.back();
Y
Yang Yang 已提交
459 460 461 462
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
463 464
  }
  Resize(new_dim);
465
  set_layout(new_layout);
Y
Yang Yang 已提交
466
  set_lod(new_lod);
467
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
468

469
  int begin = 0;
Y
Yang Yang 已提交
470
  for (auto *src : lod_tensors) {
471
    int end = begin + src->dims()[0];
472 473 474
    if (end == begin) {
      continue;
    }
475
    auto dst = Slice(begin, end);
Y
Yi Wang 已提交
476
    framework::TensorCopy(*src, dst_place, &dst);
477
    begin = end;
Y
Yang Yang 已提交
478 479 480
  }
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
  LoD length_lod;
  length_lod.reserve(offset_lod.size());
  for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
    std::vector<size_t> level;
    if (offset_lod[lvl].size() > 0) {
      level.reserve(offset_lod[lvl].size() - 1);
    }
    for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
      level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
    }
    length_lod.push_back(level);
  }
  return length_lod;
}

LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
  LoD offset_lod;
  offset_lod.reserve(length_lod.size());
  for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
    std::vector<size_t> level;
    level.reserve(length_lod[lvl].size() + 1);
    size_t tmp = 0;
    level.push_back(tmp);
    for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
      tmp += length_lod[lvl][idx];
      level.push_back(tmp);
    }
    offset_lod.push_back(level);
  }
  return offset_lod;
}

514 515
}  // namespace framework
}  // namespace paddle