“7b71876980d87c8f237b94d8529ee7fcc05ec2d9”上不存在“fs/xfs/xfs_qm_syscalls.c”
test_layers.py 5.9 KB
Newer Older
Y
Yu Yang 已提交
1
from __future__ import print_function
Q
Qiao Longfei 已提交
2 3
import unittest

Q
Qiao Longfei 已提交
4 5
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
Y
Yu Yang 已提交
6
from paddle.v2.fluid.framework import Program, program_guard
Y
Yu Yang 已提交
7 8 9 10


class TestBook(unittest.TestCase):
    def test_fit_a_line(self):
11
        program = Program()
Y
Yu Yang 已提交
12 13 14 15 16 17 18 19
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)
            program.append_backward(avg_cost)
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21
        print(str(program))
Y
Yu Yang 已提交
22 23

    def test_recognize_digits_mlp(self):
24
        program = Program()
Y
Yu Yang 已提交
25 26 27 28 29 30 31 32 33 34 35 36
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
            predict = layers.fc(input=hidden2, size=10, act='softmax')
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
37 38

    def test_simple_conv2d(self):
F
fengjiayi 已提交
39
        program = Program()
Y
Yu Yang 已提交
40 41 42 43 44
        with program_guard(program, startup_program=Program()):
            images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32')
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
Y
Yu Yang 已提交
45

46 47
    def test_conv2d_transpose(self):
        program = Program()
Y
Yu Yang 已提交
48 49 50 51
        with program_guard(program):
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
        print(str(program))
52

F
fengjiayi 已提交
53
    def test_recognize_digits_conv(self):
F
fengjiayi 已提交
54
        program = Program()
Y
Yu Yang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)

            program.append_backward(avg_cost)

        print(str(program))
81

Q
QI JUN 已提交
82 83
    def test_word_embedding(self):
        program = Program()
Y
Yu Yang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
Q
Qiao Longfei 已提交
128 129 130

    def test_linear_chain_crf(self):
        program = Program()
Y
Yu Yang 已提交
131 132 133 134 135 136 137 138
        with program_guard(program, startup_program=Program()):
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
            crf = layers.linear_chain_crf(input=hidden, label=label)
            self.assertNotEqual(crf, None)

        print(str(program))
Q
QI JUN 已提交
139

140 141 142 143 144 145 146 147 148 149
    def test_sigmoid_cross_entropy(self):
        program = Program()
        with program_guard(program):
            dat = layers.data(name='data', shape=[10], dtype='float32')
            lbl = layers.data(name='label', shape=[10], dtype='float32')
            self.assertIsNotNone(
                layers.sigmoid_cross_entropy_with_logits(
                    x=dat, label=lbl))
        print(str(program))

Y
Yu Yang 已提交
150 151 152

if __name__ == '__main__':
    unittest.main()