ps_gpu_wrapper.cu 7.9 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
15
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
16 17 18 19
#include <algorithm>
#include <ctime>
#include <memory>
#include <numeric>
Y
yaoxuefeng 已提交
20
#include "paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h"
T
Thunderbrook 已提交
21 22
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/framework/lod_tensor.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
T
Thunderbrook 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

namespace paddle {
namespace framework {

__global__ void PullCopy(float** dest, const FeatureValue* src,
                         const int64_t* len, int hidden, int slot_num,
                         int total_len, uint64_t** keys) {
  CUDA_KERNEL_LOOP(i, total_len) {
    int low = 0;
    int high = slot_num - 1;
    while (low < high) {
      int mid = (low + high) / 2;
      if (i < len[mid])
        high = mid;
      else
        low = mid + 1;
    }
    int x = low;
    int y = i - (x ? len[x - 1] : 0);
    if (*(keys[x] + y) == 0) {
      *(dest[x] + y * hidden) = 0;
      *(dest[x] + y * hidden + 1) = 0;
      *(dest[x] + y * hidden + 2) = 0;
    } else {
      *(dest[x] + y * hidden) = (src + i)->show;
      *(dest[x] + y * hidden + 1) = (src + i)->clk;
      *(dest[x] + y * hidden + 2) = (src + i)->lr;
    }
    if ((src + i)->mf_size == 0 || *(keys[x] + y) == 0) {
Y
yaoxuefeng 已提交
53
      for (int j = 0; j < hidden - 3; j++) {
T
Thunderbrook 已提交
54 55 56
        *(dest[x] + y * hidden + 3 + j) = 0;
      }
    } else {
Y
yaoxuefeng 已提交
57
      for (int j = 0; j < hidden - 3; j++) {
T
Thunderbrook 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        *(dest[x] + y * hidden + 3 + j) = (src + i)->mf[1 + j];
      }
    }
  }
}

__global__ void CopyKeysKernel(uint64_t** src_keys, uint64_t* dest_total_keys,
                               const int64_t* len, int slot_num,
                               int total_len) {
  CUDA_KERNEL_LOOP(i, total_len) {
    int low = 0;
    int high = slot_num - 1;
    while (low < high) {
      int mid = (low + high) / 2;
      if (i < len[mid])
        high = mid;
      else
        low = mid + 1;
    }
    int x = low;
    int y = i - (x ? len[x - 1] : 0);
    dest_total_keys[i] = src_keys[x][y];
  }
}

__global__ void PushCopy(FeaturePushValue* dest, float** src, int64_t* len,
                         int hidden, int slot_num, int total_len, int bs,
                         int* slot_vector) {
  CUDA_KERNEL_LOOP(i, total_len) {
    int low = 0;
    int high = slot_num - 1;
    while (low < high) {
      int mid = (low + high) / 2;
      if (i < len[mid])
        high = mid;
      else
        low = mid + 1;
    }
    int x = low;
    int y = i - (x ? len[low - 1] : 0);
    (dest + i)->slot = slot_vector[x];
    (dest + i)->show = *(src[x] + y * hidden);
    (dest + i)->clk = *(src[x] + y * hidden + 1);
    (dest + i)->lr_g = *(src[x] + y * hidden + 2) * -1. * bs;
Y
yaoxuefeng 已提交
102
    for (int j = 0; j < hidden - 3; j++) {
T
Thunderbrook 已提交
103 104 105 106 107
      (dest + i)->mf_g[j] = *(src[x] + y * hidden + 3 + j) * -1. * bs;
    }
  }
}

F
Fan Zhang 已提交
108 109
PSGPUWrapper::~PSGPUWrapper() { delete HeterPs_; }

T
Thunderbrook 已提交
110 111 112 113 114 115 116 117
void PSGPUWrapper::CopyForPull(const paddle::platform::Place& place,
                               uint64_t** gpu_keys,
                               const std::vector<float*>& values,
                               const FeatureValue* total_values_gpu,
                               const int64_t* gpu_len, const int slot_num,
                               const int hidden_size,
                               const int64_t total_length) {
  auto stream = dynamic_cast<platform::CUDADeviceContext*>(
118
                    platform::DeviceContextPool::Instance().Get(place))
T
Thunderbrook 已提交
119
                    ->stream();
120
  auto buf_value = memory::Alloc(place, values.size() * sizeof(float*));
T
Thunderbrook 已提交
121 122 123 124
  float** gpu_values = reinterpret_cast<float**>(buf_value->ptr());
  cudaMemcpy(gpu_values, values.data(), values.size() * sizeof(float*),
             cudaMemcpyHostToDevice);

125
  PullCopy<<<(total_length + 1024 - 1) / 1024, 1024, 0, stream>>>(
T
Thunderbrook 已提交
126 127 128 129 130 131 132 133 134 135
      gpu_values, total_values_gpu, gpu_len, hidden_size, slot_num,
      total_length, gpu_keys);
  cudaStreamSynchronize(stream);
}

void PSGPUWrapper::CopyKeys(const paddle::platform::Place& place,
                            uint64_t** origin_keys, uint64_t* total_keys,
                            const int64_t* gpu_len, int slot_num,
                            int total_len) {
  auto stream = dynamic_cast<platform::CUDADeviceContext*>(
136
                    platform::DeviceContextPool::Instance().Get(place))
T
Thunderbrook 已提交
137
                    ->stream();
138
  CopyKeysKernel<<<(total_len + 1024 - 1) / 1024, 1024, 0, stream>>>(
T
Thunderbrook 已提交
139 140 141 142 143 144 145 146 147 148 149 150
      origin_keys, total_keys, gpu_len, slot_num, total_len);
  cudaStreamSynchronize(stream);
}

void PSGPUWrapper::CopyForPush(const paddle::platform::Place& place,
                               const std::vector<const float*>& grad_values,
                               FeaturePushValue* total_grad_values_gpu,
                               const std::vector<int64_t>& slot_lengths,
                               const int hidden_size,
                               const int64_t total_length,
                               const int batch_size) {
  auto stream = dynamic_cast<platform::CUDADeviceContext*>(
151
                    platform::DeviceContextPool::Instance().Get(place))
T
Thunderbrook 已提交
152 153 154 155 156 157
                    ->stream();
  auto slot_lengths_lod = slot_lengths;
  for (int i = 1; i < slot_lengths_lod.size(); i++) {
    slot_lengths_lod[i] += slot_lengths_lod[i - 1];
  }
  auto buf_grad_value =
158 159
      memory::Alloc(place, grad_values.size() * sizeof(float*));
  auto buf_length = memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
T
Thunderbrook 已提交
160
  auto buf_slot_vector =
161
      memory::Alloc(place, slot_lengths_lod.size() * sizeof(int));
T
Thunderbrook 已提交
162 163 164 165 166 167 168 169 170 171 172 173

  float** gpu_values = reinterpret_cast<float**>(buf_grad_value->ptr());
  int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
  int* d_slot_vector = reinterpret_cast<int*>(buf_slot_vector->ptr());

  cudaMemcpy(gpu_values, grad_values.data(),
             grad_values.size() * sizeof(float*), cudaMemcpyHostToDevice);
  cudaMemcpy(gpu_len, slot_lengths_lod.data(),
             slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);
  cudaMemcpy(d_slot_vector, slot_vector_.data(),
             slot_lengths_lod.size() * sizeof(int), cudaMemcpyHostToDevice);

174
  PushCopy<<<(total_length + 1024 - 1) / 1024, 1024, 0, stream>>>(
T
Thunderbrook 已提交
175 176 177 178
      total_grad_values_gpu, gpu_values, gpu_len, hidden_size,
      slot_lengths.size(), total_length, batch_size, d_slot_vector);
  cudaStreamSynchronize(stream);
}
Y
yaoxuefeng 已提交
179 180 181 182 183

void PSGPUWrapper::SetSparseSGD(float nonclk_coeff, float clk_coeff,
                                float min_bound, float max_bound,
                                float learning_rate, float initial_g2sum,
                                float initial_range) {
Z
zmxdream 已提交
184 185 186 187
  OptimizerConfig optimizer_config;
  optimizer_config.set_sparse_sgd(nonclk_coeff, clk_coeff, min_bound, max_bound,
                                  learning_rate, initial_g2sum, initial_range);
  HeterPs_->set_sparse_sgd(optimizer_config);
Y
yaoxuefeng 已提交
188 189 190 191 192 193
}

void PSGPUWrapper::SetEmbedxSGD(float mf_create_thresholds,
                                float mf_learning_rate, float mf_initial_g2sum,
                                float mf_initial_range, float mf_min_bound,
                                float mf_max_bound) {
Z
zmxdream 已提交
194 195 196 197 198
  OptimizerConfig optimizer_config;
  optimizer_config.set_embedx_sgd(mf_create_thresholds, mf_learning_rate,
                                  mf_initial_g2sum, mf_initial_range,
                                  mf_min_bound, mf_max_bound);
  HeterPs_->set_embedx_sgd(optimizer_config);
Y
yaoxuefeng 已提交
199 200
}

T
Thunderbrook 已提交
201 202 203
}  // end namespace framework
}  // end namespace paddle
#endif