Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0ce42fb0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0ce42fb0
编写于
5月 10, 2022
作者:
Z
zmxdream
提交者:
GitHub
5月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
merge develop. test=develop (#42624)
上级
21b35167
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
212 addition
and
220 deletion
+212
-220
paddle/fluid/framework/fleet/heter_ps/hashtable.h
paddle/fluid/framework/fleet/heter_ps/hashtable.h
+3
-6
paddle/fluid/framework/fleet/heter_ps/hashtable_kernel.cu
paddle/fluid/framework/fleet/heter_ps/hashtable_kernel.cu
+27
-5
paddle/fluid/framework/fleet/heter_ps/hashtable_kernel.kps
paddle/fluid/framework/fleet/heter_ps/hashtable_kernel.kps
+9
-24
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
+0
-2
paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h
paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h
+0
-2
paddle/fluid/framework/fleet/heter_ps/heter_ps.cu
paddle/fluid/framework/fleet/heter_ps/heter_ps.cu
+8
-0
paddle/fluid/framework/fleet/heter_ps/heter_ps.h
paddle/fluid/framework/fleet/heter_ps/heter_ps.h
+0
-2
paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h
paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h
+2
-6
paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h
paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h
+40
-33
paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h
paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h
+57
-38
paddle/fluid/framework/fleet/ps_gpu_wrapper.cu
paddle/fluid/framework/fleet/ps_gpu_wrapper.cu
+9
-23
paddle/fluid/framework/fleet/ps_gpu_wrapper.kps
paddle/fluid/framework/fleet/ps_gpu_wrapper.kps
+5
-13
paddle/fluid/framework/ps_gpu_trainer.cc
paddle/fluid/framework/ps_gpu_trainer.cc
+51
-65
paddle/fluid/framework/trainer.h
paddle/fluid/framework/trainer.h
+1
-1
未找到文件。
paddle/fluid/framework/fleet/heter_ps/hashtable.h
浏览文件 @
0ce42fb0
...
...
@@ -41,9 +41,7 @@ limitations under the License. */
#include "xpu/kernel/simd.h"
#endif
#if defined(PADDLE_WITH_XPU_KP)
#include "paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -132,10 +130,8 @@ class HashTable {
void
show
();
#if defined(PADDLE_WITH_XPU_KP)
void
set_sparse_sgd
(
const
OptimizerConfig
&
optimizer_config
);
void
set_embedx_sgd
(
const
OptimizerConfig
&
optimizer_config
);
#endif
template
<
typename
StreamType
>
void
dump_to_cpu
(
int
devid
,
StreamType
stream
);
...
...
@@ -178,9 +174,10 @@ class HashTable {
TableContainer
<
KeyType
,
ValType
>*
container_
;
#elif defined(PADDLE_WITH_XPU_KP)
XPUCacheArray
<
KeyType
,
ValType
>*
container_
;
OptimizerConfig
*
xpu_optimizer_config_
;
OptimizerConfig
cpu_optimizer_config_
;
#endif
OptimizerConfig
*
device_optimizer_config_
;
OptimizerConfig
host_optimizer_config_
;
int
BLOCK_SIZE_
{
256
};
float
LOAD_FACTOR
{
0.75
f
};
size_t
capacity_
;
...
...
paddle/fluid/framework/fleet/heter_ps/hashtable_kernel.cu
浏览文件 @
0ce42fb0
...
...
@@ -95,6 +95,7 @@ __global__ void dy_mf_search_kernel(Table* table,
template
<
typename
Table
,
typename
GradType
,
typename
Sgd
>
__global__
void
update_kernel
(
Table
*
table
,
const
OptimizerConfig
&
optimizer_config
,
const
typename
Table
::
key_type
*
const
keys
,
const
GradType
*
const
grads
,
size_t
len
,
Sgd
sgd
)
{
...
...
@@ -102,13 +103,14 @@ __global__ void update_kernel(Table* table,
if
(
i
<
len
)
{
auto
it
=
table
->
find
(
keys
[
i
]);
if
(
it
!=
table
->
end
())
{
sgd
.
update_value
((
it
.
getter
())
->
second
,
grads
[
i
]);
sgd
.
update_value
(
optimizer_config
,
(
it
.
getter
())
->
second
,
grads
[
i
]);
}
}
}
template
<
typename
Table
,
typename
Sgd
>
__global__
void
dy_mf_update_kernel
(
Table
*
table
,
const
OptimizerConfig
&
optimizer_config
,
const
typename
Table
::
key_type
*
const
keys
,
const
char
*
const
grads
,
size_t
len
,
Sgd
sgd
,
size_t
grad_value_size
)
{
...
...
@@ -117,7 +119,7 @@ __global__ void dy_mf_update_kernel(Table* table,
auto
it
=
table
->
find
(
keys
[
i
]);
if
(
it
!=
table
->
end
())
{
FeaturePushValue
*
cur
=
(
FeaturePushValue
*
)(
grads
+
i
*
grad_value_size
);
sgd
.
dy_mf_update_value
((
it
.
getter
())
->
second
,
*
cur
);
sgd
.
dy_mf_update_value
(
optimizer_config
,
(
it
.
getter
())
->
second
,
*
cur
);
}
else
{
printf
(
"yxf::push miss key: %d"
,
keys
[
i
]);
}
...
...
@@ -127,6 +129,9 @@ __global__ void dy_mf_update_kernel(Table* table,
template
<
typename
KeyType
,
typename
ValType
>
HashTable
<
KeyType
,
ValType
>::
HashTable
(
size_t
capacity
)
{
container_
=
new
TableContainer
<
KeyType
,
ValType
>
(
capacity
);
cudaMalloc
((
void
**
)
&
device_optimizer_config_
,
sizeof
(
OptimizerConfig
));
cudaMemcpy
((
void
*
)
device_optimizer_config_
,
&
host_optimizer_config_
,
sizeof
(
OptimizerConfig
),
cudaMemcpyHostToDevice
);
rwlock_
.
reset
(
new
phi
::
RWLock
);
}
...
...
@@ -135,6 +140,22 @@ HashTable<KeyType, ValType>::~HashTable() {
delete
container_
;
}
template
<
typename
KeyType
,
typename
ValType
>
void
HashTable
<
KeyType
,
ValType
>::
set_sparse_sgd
(
const
OptimizerConfig
&
optimizer_config
)
{
host_optimizer_config_
.
set_sparse_sgd
(
optimizer_config
);
cudaMemcpy
((
void
*
)
device_optimizer_config_
,
&
host_optimizer_config_
,
sizeof
(
OptimizerConfig
),
cudaMemcpyHostToDevice
);
}
template
<
typename
KeyType
,
typename
ValType
>
void
HashTable
<
KeyType
,
ValType
>::
set_embedx_sgd
(
const
OptimizerConfig
&
optimizer_config
)
{
host_optimizer_config_
.
set_embedx_sgd
(
optimizer_config
);
cudaMemcpy
((
void
*
)
device_optimizer_config_
,
&
host_optimizer_config_
,
sizeof
(
OptimizerConfig
),
cudaMemcpyHostToDevice
);
}
template
<
typename
KeyType
,
typename
ValType
>
void
HashTable
<
KeyType
,
ValType
>::
show
()
{
container_
->
print
();
...
...
@@ -279,8 +300,8 @@ void HashTable<KeyType, ValType>::update(const KeyType* d_keys,
return
;
}
const
int
grid_size
=
(
len
-
1
)
/
BLOCK_SIZE_
+
1
;
update_kernel
<<<
grid_size
,
BLOCK_SIZE_
,
0
,
stream
>>>
(
container_
,
d_keys
,
d_grads
,
len
,
sgd
);
update_kernel
<<<
grid_size
,
BLOCK_SIZE_
,
0
,
stream
>>>
(
container_
,
*
device_optimizer_config_
,
d_keys
,
d_grads
,
len
,
sgd
);
}
template
<
typename
KeyType
,
typename
ValType
>
...
...
@@ -293,7 +314,8 @@ void HashTable<KeyType, ValType>::update(const KeyType* d_keys,
}
const
int
grid_size
=
(
len
-
1
)
/
BLOCK_SIZE_
+
1
;
dy_mf_update_kernel
<<<
grid_size
,
BLOCK_SIZE_
,
0
,
stream
>>>
(
container_
,
d_keys
,
d_grads
,
len
,
sgd
,
push_grad_value_size_
);
container_
,
*
device_optimizer_config_
,
d_keys
,
d_grads
,
len
,
sgd
,
push_grad_value_size_
);
}
template
class
HashTable
<
unsigned
long
,
paddle
::
framework
::
FeatureValue
>;
...
...
paddle/fluid/framework/fleet/heter_ps/hashtable_kernel.kps
浏览文件 @
0ce42fb0
...
...
@@ -163,7 +163,7 @@ __global__ void search_kernel(Table& table, const KeyType* const keys,
}
template <typename KeyType, typename ValType, typename Table, typename GradType>
__global__ void update_kernel(
OptimizerConfig& optimizer_config, Table& table
,
__global__ void update_kernel(
Table& table, OptimizerConfig& optimizer_config
,
const KeyType* const keys,
const GradType* const grads, long long len) {
int cid = core_id();
...
...
@@ -202,12 +202,9 @@ HashTable<KeyType, ValType>::HashTable(size_t capacity) {
sizeof(XPUCacheArray<KeyType, ValType>));
xpu_memcpy((void*)container_, &tmp_container,
sizeof(XPUCacheArray<KeyType, ValType>), XPU_HOST_TO_DEVICE);
OptimizerConfig tmp_opt_config;
xpu_malloc(reinterpret_cast<void**>(&xpu_optimizer_config_),
xpu_malloc(reinterpret_cast<void**>(&device_optimizer_config_),
sizeof(OptimizerConfig));
xpu_memcpy((void*)xpu_optimizer_config_, &tmp_opt_config,
xpu_memcpy((void*)device_optimizer_config_, &host_optimizer_config_,
sizeof(OptimizerConfig), XPU_HOST_TO_DEVICE);
rwlock_.reset(new phi::RWLock);
...
...
@@ -216,7 +213,7 @@ HashTable<KeyType, ValType>::HashTable(size_t capacity) {
template <typename KeyType, typename ValType>
HashTable<KeyType, ValType>::~HashTable() {
xpu_free((void*)container_);
xpu_free((void*)
xpu
_optimizer_config_);
xpu_free((void*)
device
_optimizer_config_);
}
template <typename KeyType, typename ValType>
...
...
@@ -227,28 +224,16 @@ void HashTable<KeyType, ValType>::show() {
template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::set_sparse_sgd(
const OptimizerConfig& optimizer_config) {
cpu_optimizer_config_.nonclk_coeff = optimizer_config.nonclk_coeff;
cpu_optimizer_config_.clk_coeff = optimizer_config.clk_coeff;
cpu_optimizer_config_.min_bound = optimizer_config.min_bound;
cpu_optimizer_config_.max_bound = optimizer_config.max_bound;
cpu_optimizer_config_.learning_rate = optimizer_config.learning_rate;
cpu_optimizer_config_.initial_g2sum = optimizer_config.initial_g2sum;
cpu_optimizer_config_.initial_range = optimizer_config.initial_range;
xpu_memcpy((void*)xpu_optimizer_config_, &cpu_optimizer_config_,
host_optimizer_config_.set_sparse_sgd(optimizer_config);
xpu_memcpy((void*)device_optimizer_config_, &host_optimizer_config_,
sizeof(OptimizerConfig), XPU_HOST_TO_DEVICE);
}
template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::set_embedx_sgd(
const OptimizerConfig& optimizer_config) {
cpu_optimizer_config_.mf_create_thresholds =
optimizer_config.mf_create_thresholds;
cpu_optimizer_config_.mf_learning_rate = optimizer_config.mf_learning_rate;
cpu_optimizer_config_.mf_initial_g2sum = optimizer_config.mf_initial_g2sum;
cpu_optimizer_config_.mf_initial_range = optimizer_config.mf_initial_range;
cpu_optimizer_config_.mf_min_bound = optimizer_config.mf_min_bound;
cpu_optimizer_config_.mf_max_bound = optimizer_config.mf_max_bound;
xpu_memcpy((void*)xpu_optimizer_config_, &cpu_optimizer_config_,
host_optimizer_config_.set_embedx_sgd(optimizer_config);
xpu_memcpy((void*)device_optimizer_config_, &host_optimizer_config_,
sizeof(OptimizerConfig), XPU_HOST_TO_DEVICE);
}
...
...
@@ -306,7 +291,7 @@ void HashTable<KeyType, ValType>::update(const KeyType* d_keys,
long long c_len = (long long)len;
update_kernel<KeyType, ValType, XPUCacheArray<KeyType, ValType>,
GradType><<<4, 64, stream>>>(
*
xpu_optimizer_config_, *container
_, d_keys, d_grads, c_len);
*
container_, *device_optimizer_config
_, d_keys, d_grads, c_len);
}
template <typename KeyType, typename ValType>
...
...
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
浏览文件 @
0ce42fb0
...
...
@@ -65,10 +65,8 @@ class HeterComm {
void
push_sparse
(
int
num
,
KeyType
*
d_keys
,
GradType
*
d_grads
,
size_t
len
);
#endif
#if defined(PADDLE_WITH_XPU_KP)
void
set_sparse_sgd
(
const
OptimizerConfig
&
optimizer_config
);
void
set_embedx_sgd
(
const
OptimizerConfig
&
optimizer_config
);
#endif
int
log2i
(
int
x
);
...
...
paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h
浏览文件 @
0ce42fb0
...
...
@@ -342,7 +342,6 @@ int HeterComm<KeyType, ValType, GradType>::get_index_by_devid(int devid) {
return
resource_
->
get_index_by_devid
(
devid
);
}
#if defined(PADDLE_WITH_XPU_KP)
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
set_sparse_sgd
(
const
OptimizerConfig
&
optimizer_config
)
{
...
...
@@ -358,7 +357,6 @@ void HeterComm<KeyType, ValType, GradType>::set_embedx_sgd(
table
->
set_embedx_sgd
(
optimizer_config
);
}
}
#endif
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
build_ps
(
...
...
paddle/fluid/framework/fleet/heter_ps/heter_ps.cu
浏览文件 @
0ce42fb0
...
...
@@ -48,6 +48,14 @@ int HeterPs::get_index_by_devid(int devid) {
return
comm_
->
get_index_by_devid
(
devid
);
}
void
HeterPs
::
set_sparse_sgd
(
const
OptimizerConfig
&
optimizer_config
)
{
comm_
->
set_sparse_sgd
(
optimizer_config
);
}
void
HeterPs
::
set_embedx_sgd
(
const
OptimizerConfig
&
optimizer_config
)
{
comm_
->
set_embedx_sgd
(
optimizer_config
);
}
void
HeterPs
::
end_pass
()
{
comm_
->
end_pass
();
}
void
HeterPs
::
show_one_table
(
int
gpu_num
)
{
comm_
->
show_one_table
(
gpu_num
);
}
...
...
paddle/fluid/framework/fleet/heter_ps/heter_ps.h
浏览文件 @
0ce42fb0
...
...
@@ -44,10 +44,8 @@ class HeterPs : public HeterPsBase {
int
comm_size
)
override
;
#endif
#if defined(PADDLE_WITH_XPU_KP)
void
set_sparse_sgd
(
const
OptimizerConfig
&
optimizer_config
)
override
;
void
set_embedx_sgd
(
const
OptimizerConfig
&
optimizer_config
)
override
;
#endif
void
end_pass
()
override
;
int
get_index_by_devid
(
int
devid
)
override
;
...
...
paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h
浏览文件 @
0ce42fb0
...
...
@@ -16,9 +16,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#if defined(PADDLE_WITH_XPU_KP)
#include "paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h"
#endif
#ifdef PADDLE_WITH_HETERPS
...
...
@@ -48,10 +46,8 @@ class HeterPsBase {
virtual
void
push_sparse
(
int
num
,
FeatureKey
*
d_keys
,
FeaturePushValue
*
d_grads
,
size_t
len
)
=
0
;
#if defined(PADDLE_WITH_XPU_KP)
virtual
void
set_sparse_sgd
(
const
OptimizerConfig
&
optimizer_config
)
{}
virtual
void
set_embedx_sgd
(
const
OptimizerConfig
&
optimizer_config
)
{}
#endif
virtual
void
set_sparse_sgd
(
const
OptimizerConfig
&
optimizer_config
)
=
0
;
virtual
void
set_embedx_sgd
(
const
OptimizerConfig
&
optimizer_config
)
=
0
;
static
HeterPsBase
*
get_instance
(
size_t
capacity
,
std
::
shared_ptr
<
HeterPsResource
>
resource
);
...
...
paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h
浏览文件 @
0ce42fb0
...
...
@@ -35,58 +35,64 @@ class Optimizer {
void
initialize
()
{}
__device__
void
update_lr
(
float
&
w
,
float
&
g2sum
,
float
g
,
// NOLINT
__device__
void
update_lr
(
const
OptimizerConfig
&
optimizer_config
,
float
&
w
,
// NOLINT
float
&
g2sum
,
float
g
,
// NOLINT
float
scale
)
{
double
add_g2sum
=
0
;
double
ratio
=
optimizer_config
::
learning_rate
*
sqrt
(
optimizer_config
::
initial_g2sum
/
(
optimizer_config
::
initial_g2sum
+
g2sum
));
double
ratio
=
optimizer_config
.
learning_rate
*
sqrt
(
optimizer_config
.
initial_g2sum
/
(
optimizer_config
.
initial_g2sum
+
g2sum
));
double
scaled_grad
=
g
/
scale
;
w
+=
scaled_grad
*
ratio
;
if
(
w
<
optimizer_config
::
min_bound
)
w
=
optimizer_config
::
min_bound
;
if
(
w
>
optimizer_config
::
max_bound
)
w
=
optimizer_config
::
max_bound
;
if
(
w
<
optimizer_config
.
min_bound
)
w
=
optimizer_config
.
min_bound
;
if
(
w
>
optimizer_config
.
max_bound
)
w
=
optimizer_config
.
max_bound
;
add_g2sum
+=
scaled_grad
*
scaled_grad
;
g2sum
+=
add_g2sum
;
}
__device__
void
update_mf
(
int
n
,
float
*
w
,
float
&
g2sum
,
// NOLINT
__device__
void
update_mf
(
const
OptimizerConfig
&
optimizer_config
,
int
n
,
float
*
w
,
float
&
g2sum
,
// NOLINT
const
float
*
g
,
float
scale
)
{
double
add_g2sum
=
0
;
double
ratio
=
optimizer_config
::
mf_learning_rate
*
sqrt
(
optimizer_config
::
mf_initial_g2sum
/
(
optimizer_config
::
mf_initial_g2sum
+
g2sum
));
double
ratio
=
optimizer_config
.
mf_learning_rate
*
sqrt
(
optimizer_config
.
mf_initial_g2sum
/
(
optimizer_config
.
mf_initial_g2sum
+
g2sum
));
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
double
scaled_grad
=
g
[
i
]
/
scale
;
w
[
i
]
+=
scaled_grad
*
ratio
;
if
(
w
[
i
]
<
optimizer_config
::
mf_min_bound
)
w
[
i
]
=
optimizer_config
::
mf_min_bound
;
if
(
w
[
i
]
>
optimizer_config
::
mf_max_bound
)
w
[
i
]
=
optimizer_config
::
mf_max_bound
;
if
(
w
[
i
]
<
optimizer_config
.
mf_min_bound
)
w
[
i
]
=
optimizer_config
.
mf_min_bound
;
if
(
w
[
i
]
>
optimizer_config
.
mf_max_bound
)
w
[
i
]
=
optimizer_config
.
mf_max_bound
;
add_g2sum
+=
scaled_grad
*
scaled_grad
;
}
g2sum
+=
add_g2sum
/
n
;
}
__device__
void
update_value
(
ValType
&
val
,
const
GradType
&
grad
)
{
// NOLINT
__device__
void
update_value
(
const
OptimizerConfig
&
optimizer_config
,
ValType
&
val
,
// NOLINT
const
GradType
&
grad
)
{
val
.
slot
=
grad
.
slot
;
val
.
show
+=
grad
.
show
;
val
.
clk
+=
grad
.
clk
;
val
.
delta_score
+=
optimizer_config
::
nonclk_coeff
*
(
grad
.
show
-
grad
.
clk
)
+
optimizer_config
::
clk_coeff
*
grad
.
clk
;
val
.
delta_score
+=
optimizer_config
.
nonclk_coeff
*
(
grad
.
show
-
grad
.
clk
)
+
optimizer_config
.
clk_coeff
*
grad
.
clk
;
update_lr
(
val
.
lr
,
val
.
lr_g2sum
,
grad
.
lr_g
,
grad
.
show
);
update_lr
(
optimizer_config
,
val
.
lr
,
val
.
lr_g2sum
,
grad
.
lr_g
,
grad
.
show
);
if
(
val
.
mf_size
==
0
)
{
if
(
optimizer_config
::
mf_create_thresholds
<=
optimizer_config
::
nonclk_coeff
*
(
val
.
show
-
val
.
clk
)
+
optimizer_config
::
clk_coeff
*
val
.
clk
)
{
if
(
optimizer_config
.
mf_create_thresholds
<=
optimizer_config
.
nonclk_coeff
*
(
val
.
show
-
val
.
clk
)
+
optimizer_config
.
clk_coeff
*
val
.
clk
)
{
val
.
mf_size
=
MF_DIM
+
1
;
val
.
mf
[
0
]
=
0
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
...
...
@@ -94,30 +100,31 @@ class Optimizer {
curand_init
(
clock64
(),
tid_x
,
0
,
&
state
);
for
(
int
i
=
0
;
i
<
MF_DIM
;
++
i
)
{
val
.
mf
[
i
+
1
]
=
(
curand_uniform
(
&
state
))
*
optimizer_config
::
mf_initial_range
;
(
curand_uniform
(
&
state
))
*
optimizer_config
.
mf_initial_range
;
}
}
}
else
{
update_mf
(
MF_DIM
,
&
val
.
mf
[
1
],
val
.
mf
[
0
],
grad
.
mf_g
,
grad
.
show
);
update_mf
(
optimizer_config
,
MF_DIM
,
&
val
.
mf
[
1
],
val
.
mf
[
0
],
grad
.
mf_g
,
grad
.
show
);
}
}
__device__
void
dy_mf_update_value
(
ValType
*
ptr
,
const
GradType
&
grad
)
{
__device__
void
dy_mf_update_value
(
const
OptimizerConfig
&
optimizer_config
,
ValType
*
ptr
,
const
GradType
&
grad
)
{
ptr
->
slot
=
grad
.
slot
;
ptr
->
show
+=
grad
.
show
;
ptr
->
clk
+=
grad
.
clk
;
ptr
->
delta_score
+=
optimizer_config
::
nonclk_coeff
*
(
grad
.
show
-
grad
.
clk
)
+
optimizer_config
::
clk_coeff
*
grad
.
clk
;
ptr
->
delta_score
+=
optimizer_config
.
nonclk_coeff
*
(
grad
.
show
-
grad
.
clk
)
+
optimizer_config
.
clk_coeff
*
grad
.
clk
;
update_lr
(
ptr
->
lr
,
ptr
->
lr_g2sum
,
grad
.
lr_g
,
grad
.
show
);
update_lr
(
optimizer_config
,
ptr
->
lr
,
ptr
->
lr_g2sum
,
grad
.
lr_g
,
grad
.
show
);
// use MF_DIM temporarily
// ptr->mf_dim = grad.mf_dim;
if
(
ptr
->
mf_size
==
0
)
{
if
(
optimizer_config
::
mf_create_thresholds
<=
optimizer_config
::
nonclk_coeff
*
(
ptr
->
show
-
ptr
->
clk
)
+
optimizer_config
::
clk_coeff
*
ptr
->
clk
)
{
if
(
optimizer_config
.
mf_create_thresholds
<=
optimizer_config
.
nonclk_coeff
*
(
ptr
->
show
-
ptr
->
clk
)
+
optimizer_config
.
clk_coeff
*
ptr
->
clk
)
{
// ptr->mf_size = ptr->mf_dim + 1;
ptr
->
mf_size
=
MF_DIM
+
1
;
...
...
@@ -127,11 +134,11 @@ class Optimizer {
curand_init
(
clock64
(),
tid_x
,
0
,
&
state
);
for
(
int
i
=
0
;
i
<
MF_DIM
;
++
i
)
{
ptr
->
mf
[
i
+
1
]
=
(
curand_uniform
(
&
state
))
*
optimizer_config
::
mf_initial_range
;
(
curand_uniform
(
&
state
))
*
optimizer_config
.
mf_initial_range
;
}
}
}
else
{
update_mf
(
MF_DIM
,
&
(
ptr
->
mf
[
1
]),
ptr
->
mf
[
0
],
grad
.
mf_g
,
update_mf
(
optimizer_config
,
MF_DIM
,
&
(
ptr
->
mf
[
1
]),
ptr
->
mf
[
0
],
grad
.
mf_g
,
grad
.
show
);
// for local test
}
}
...
...
paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h
浏览文件 @
0ce42fb0
...
...
@@ -14,50 +14,69 @@ limitations under the License. */
#pragma once
#if defined(PADDLE_WITH_CUDA)
namespace
paddle
{
namespace
framework
{
namespace
optimizer_config
{
class
OptimizerConfig
{
public:
float
nonclk_coeff
=
0.1
;
float
clk_coeff
=
1
;
__constant__
float
nonclk_coeff
=
0.1
;
__constant__
float
clk_coeff
=
1
;
float
min_bound
=
-
10
;
float
max_bound
=
10
;
float
learning_rate
=
0.05
;
float
initial_g2sum
=
3.0
;
float
initial_range
=
0
;
__constant__
float
min_bound
=
-
10
;
__constant__
float
max_bound
=
10
;
__constant__
float
learning_rate
=
0.05
;
__constant__
float
initial_g2sum
=
3.0
;
__constant__
float
initial_range
=
0
;
float
mf_create_thresholds
=
10
;
float
mf_learning_rate
=
0.05
;
float
mf_initial_g2sum
=
3.0
;
float
mf_initial_range
=
1e-4
;
float
mf_min_bound
=
-
10
;
float
mf_max_bound
=
10
;
__constant__
float
mf_create_thresholds
=
10
;
__constant__
float
mf_learning_rate
=
0.05
;
__constant__
float
mf_initial_g2sum
=
3.0
;
__constant__
float
mf_initial_range
=
1e-4
;
__constant__
float
mf_min_bound
=
-
10
;
__constant__
float
mf_max_bound
=
10
;
}
// namespace optimizer_config
void
set_sparse_sgd
(
float
nonclk_coeff
,
float
clk_coeff
,
float
min_bound
,
float
max_bound
,
float
learning_rate
,
float
initial_g2sum
,
float
initial_range
)
{
this
->
nonclk_coeff
=
nonclk_coeff
;
this
->
clk_coeff
=
clk_coeff
;
this
->
min_bound
=
min_bound
;
this
->
max_bound
=
max_bound
;
this
->
learning_rate
=
learning_rate
;
this
->
initial_g2sum
=
initial_g2sum
;
this
->
initial_range
=
initial_range
;
}
#elif defined(PADDLE_WITH_XPU_KP)
namespace
paddle
{
namespace
framework
{
void
set_sparse_sgd
(
const
OptimizerConfig
&
optimizer_config
)
{
this
->
nonclk_coeff
=
optimizer_config
.
nonclk_coeff
;
this
->
clk_coeff
=
optimizer_config
.
clk_coeff
;
this
->
min_bound
=
optimizer_config
.
min_bound
;
this
->
max_bound
=
optimizer_config
.
max_bound
;
this
->
learning_rate
=
optimizer_config
.
learning_rate
;
this
->
initial_g2sum
=
optimizer_config
.
initial_g2sum
;
this
->
initial_range
=
optimizer_config
.
initial_range
;
}
class
OptimizerConfig
{
public:
float
nonclk_coeff
;
float
clk_coeff
;
float
min_bound
;
float
max_bound
;
float
learning_rate
;
float
initial_g2sum
;
float
initial_range
;
float
mf_create_thresholds
;
float
mf_learning_rate
;
float
mf_initial_g2sum
;
float
mf_initial_range
;
float
mf_min_bound
;
float
mf_max_bound
;
void
set_embedx_sgd
(
float
mf_create_thresholds
,
float
mf_learning_rate
,
float
mf_initial_g2sum
,
float
mf_initial_range
,
float
mf_min_bound
,
float
mf_max_bound
)
{
this
->
mf_create_thresholds
=
mf_create_thresholds
;
this
->
mf_learning_rate
=
mf_learning_rate
;
this
->
mf_initial_g2sum
=
mf_initial_g2sum
;
this
->
mf_initial_range
=
mf_initial_range
;
this
->
mf_min_bound
=
mf_min_bound
;
this
->
mf_max_bound
=
mf_max_bound
;
}
void
set_embedx_sgd
(
const
OptimizerConfig
&
optimizer_config
)
{
this
->
mf_create_thresholds
=
optimizer_config
.
mf_create_thresholds
;
this
->
mf_learning_rate
=
optimizer_config
.
mf_learning_rate
;
this
->
mf_initial_g2sum
=
optimizer_config
.
mf_initial_g2sum
;
this
->
mf_initial_range
=
optimizer_config
.
mf_initial_range
;
this
->
mf_min_bound
=
optimizer_config
.
mf_min_bound
;
this
->
mf_max_bound
=
optimizer_config
.
mf_max_bound
;
}
};
}
// namespace framework
}
// namespace paddle
#endif
paddle/fluid/framework/fleet/ps_gpu_wrapper.cu
浏览文件 @
0ce42fb0
...
...
@@ -181,35 +181,21 @@ void PSGPUWrapper::SetSparseSGD(float nonclk_coeff, float clk_coeff,
float
min_bound
,
float
max_bound
,
float
learning_rate
,
float
initial_g2sum
,
float
initial_range
)
{
cudaMemcpyToSymbol
(
optimizer_config
::
nonclk_coeff
,
&
nonclk_coeff
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
clk_coeff
,
&
clk_coeff
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
min_bound
,
&
min_bound
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
max_bound
,
&
max_bound
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
learning_rate
,
&
learning_rate
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
initial_g2sum
,
&
initial_g2sum
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
initial_range
,
&
initial_range
,
sizeof
(
float
));
OptimizerConfig
optimizer_config
;
optimizer_config
.
set_sparse_sgd
(
nonclk_coeff
,
clk_coeff
,
min_bound
,
max_bound
,
learning_rate
,
initial_g2sum
,
initial_range
);
HeterPs_
->
set_sparse_sgd
(
optimizer_config
);
}
void
PSGPUWrapper
::
SetEmbedxSGD
(
float
mf_create_thresholds
,
float
mf_learning_rate
,
float
mf_initial_g2sum
,
float
mf_initial_range
,
float
mf_min_bound
,
float
mf_max_bound
)
{
cudaMemcpyToSymbol
(
optimizer_config
::
mf_create_thresholds
,
&
mf_create_thresholds
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
mf_learning_rate
,
&
mf_learning_rate
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
mf_initial_g2sum
,
&
mf_initial_g2sum
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
mf_initial_range
,
&
mf_initial_range
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
mf_min_bound
,
&
mf_min_bound
,
sizeof
(
float
));
cudaMemcpyToSymbol
(
optimizer_config
::
mf_max_bound
,
&
mf_max_bound
,
sizeof
(
float
));
OptimizerConfig
optimizer_config
;
optimizer_config
.
set_embedx_sgd
(
mf_create_thresholds
,
mf_learning_rate
,
mf_initial_g2sum
,
mf_initial_range
,
mf_min_bound
,
mf_max_bound
);
HeterPs_
->
set_embedx_sgd
(
optimizer_config
);
}
}
// end namespace framework
...
...
paddle/fluid/framework/fleet/ps_gpu_wrapper.kps
浏览文件 @
0ce42fb0
...
...
@@ -256,13 +256,8 @@ void PSGPUWrapper::SetSparseSGD(float nonclk_coeff, float clk_coeff,
float learning_rate, float initial_g2sum,
float initial_range) {
OptimizerConfig optimizer_config;
optimizer_config.nonclk_coeff = nonclk_coeff;
optimizer_config.clk_coeff = clk_coeff;
optimizer_config.min_bound = min_bound;
optimizer_config.max_bound = max_bound;
optimizer_config.learning_rate = learning_rate;
optimizer_config.initial_g2sum = initial_g2sum;
optimizer_config.initial_range = initial_range;
optimizer_config.set_sparse_sgd(nonclk_coeff, clk_coeff, min_bound, max_bound,
learning_rate, initial_g2sum, initial_range);
HeterPs_->set_sparse_sgd(optimizer_config);
}
...
...
@@ -271,12 +266,9 @@ void PSGPUWrapper::SetEmbedxSGD(float mf_create_thresholds,
float mf_initial_range, float mf_min_bound,
float mf_max_bound) {
OptimizerConfig optimizer_config;
optimizer_config.mf_create_thresholds = mf_create_thresholds;
optimizer_config.mf_learning_rate = mf_learning_rate;
optimizer_config.mf_initial_g2sum = mf_initial_g2sum;
optimizer_config.mf_initial_range = mf_initial_range;
optimizer_config.mf_min_bound = mf_min_bound;
optimizer_config.mf_max_bound = mf_max_bound;
optimizer_config.set_embedx_sgd(mf_create_thresholds, mf_learning_rate,
mf_initial_g2sum, mf_initial_range,
mf_min_bound, mf_max_bound);
HeterPs_->set_embedx_sgd(optimizer_config);
}
...
...
paddle/fluid/framework/ps_gpu_trainer.cc
浏览文件 @
0ce42fb0
...
...
@@ -95,8 +95,46 @@ void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc,
return
;
}
void
add_sparse_optimizer
(
std
::
unordered_map
<
std
::
string
,
float
>&
config
,
// NOLINT
const
::
paddle
::
SparseCommonSGDRuleParameter
&
sgd_param
,
const
std
::
string
&
prefix
=
""
)
{
auto
optimizer_name
=
sgd_param
.
name
();
if
(
optimizer_name
==
"naive"
)
{
config
[
prefix
+
"learning_rate"
]
=
sgd_param
.
naive
().
learning_rate
();
config
[
prefix
+
"initial_range"
]
=
sgd_param
.
naive
().
initial_range
();
if
(
sgd_param
.
naive
().
weight_bounds_size
()
==
2
)
{
config
[
prefix
+
"min_bound"
]
=
sgd_param
.
naive
().
weight_bounds
()[
0
];
config
[
prefix
+
"max_bound"
]
=
sgd_param
.
naive
().
weight_bounds
()[
1
];
}
}
else
if
(
optimizer_name
==
"adagrad"
)
{
config
[
prefix
+
"learning_rate"
]
=
sgd_param
.
adagrad
().
learning_rate
();
config
[
prefix
+
"initial_range"
]
=
sgd_param
.
adagrad
().
initial_range
();
config
[
prefix
+
"initial_g2sum"
]
=
sgd_param
.
adagrad
().
initial_g2sum
();
if
(
sgd_param
.
adagrad
().
weight_bounds_size
()
==
2
)
{
config
[
prefix
+
"min_bound"
]
=
sgd_param
.
adagrad
().
weight_bounds
()[
0
];
config
[
prefix
+
"max_bound"
]
=
sgd_param
.
adagrad
().
weight_bounds
()[
1
];
}
}
else
if
(
optimizer_name
==
"std_adagrad"
)
{
config
[
prefix
+
"learning_rate"
]
=
sgd_param
.
adagrad
().
learning_rate
();
config
[
prefix
+
"initial_range"
]
=
sgd_param
.
adagrad
().
initial_range
();
config
[
prefix
+
"initial_g2sum"
]
=
sgd_param
.
adagrad
().
initial_g2sum
();
if
(
sgd_param
.
adagrad
().
weight_bounds_size
()
==
2
)
{
config
[
prefix
+
"min_bound"
]
=
sgd_param
.
adagrad
().
weight_bounds
()[
0
];
config
[
prefix
+
"max_bound"
]
=
sgd_param
.
adagrad
().
weight_bounds
()[
1
];
}
}
else
if
(
optimizer_name
==
"adam"
)
{
config
[
prefix
+
"learning_rate"
]
=
sgd_param
.
adam
().
learning_rate
();
config
[
prefix
+
"initial_range"
]
=
sgd_param
.
adam
().
initial_range
();
if
(
sgd_param
.
adam
().
weight_bounds_size
()
==
2
)
{
config
[
prefix
+
"min_bound"
]
=
sgd_param
.
adam
().
weight_bounds
()[
0
];
config
[
prefix
+
"max_bound"
]
=
sgd_param
.
adam
().
weight_bounds
()[
1
];
}
}
}
void
PSGPUTrainer
::
InitializeGPUServer
(
const
TrainerDesc
&
trainer_desc
)
{
//
add for hbmps optimizer config
//
optimizer config for hbmps
auto
fleet_desc_str
=
trainer_desc
.
fleet_desc
();
google
::
protobuf
::
TextFormat
::
ParseFromString
(
fleet_desc_str
,
&
_ps_param
);
auto
sparse_table
=
...
...
@@ -105,7 +143,7 @@ void PSGPUTrainer::InitializeGPUServer(const TrainerDesc& trainer_desc) {
auto
sparse_table_accessor_parameter
=
sparse_table_accessor
.
downpour_accessor_param
();
auto
accessor_class
=
sparse_table_accessor
.
accessor_class
();
//
gpups' sparse table optimizer config
//
NOTE(zhangminxu): gpups' sparse table optimizer config,
// now only support single sparse table
// auto sparse_table = param_.sparse_table(0);
std
::
unordered_map
<
std
::
string
,
float
>
config
;
...
...
@@ -126,7 +164,14 @@ void PSGPUTrainer::InitializeGPUServer(const TrainerDesc& trainer_desc) {
config
[
"max_bound"
]
=
sparse_table_accessor
.
sparse_sgd_param
().
weight_bounds
()[
1
];
}
// NOTE(zhangminxu): for DownpourCtrAccessor & DownpourCtrDoubleAccessor,
// optimizer config for embed_w & embedx_w is the same
config
[
"mf_create_thresholds"
]
=
sparse_table_accessor
.
embedx_threshold
();
config
[
"mf_learning_rate"
]
=
config
[
"learning_rate"
];
config
[
"mf_initial_g2sum"
]
=
config
[
"initial_g2sum"
];
config
[
"mf_initial_range"
]
=
config
[
"initial_range"
];
config
[
"mf_min_bound"
]
=
config
[
"min_bound"
];
config
[
"mf_max_bound"
]
=
config
[
"max_bound"
];
}
else
if
(
accessor_class
==
"DownpourSparseValueAccessor"
)
{
auto
optimizer_name
=
sparse_table_accessor
.
sparse_commonsgd_param
().
name
();
if
(
optimizer_name
==
"naive"
)
{
...
...
@@ -186,71 +231,12 @@ void PSGPUTrainer::InitializeGPUServer(const TrainerDesc& trainer_desc) {
accessor_class
==
"DownpourDoubleUnitAccessor"
)
{
config
[
"nonclk_coeff"
]
=
sparse_table_accessor_parameter
.
nonclk_coeff
();
config
[
"clk_coeff"
]
=
sparse_table_accessor_parameter
.
click_coeff
();
auto
optimizer_name
=
sparse_table_accessor
.
embedx_sgd_param
().
name
();
if
(
optimizer_name
==
"naive"
)
{
config
[
"mf_learning_rate"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
naive
().
learning_rate
();
config
[
"mf_initial_range"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
naive
().
initial_range
();
if
(
sparse_table_accessor
.
embedx_sgd_param
()
.
naive
()
.
weight_bounds_size
()
==
2
)
{
config
[
"mf_min_bound"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
naive
().
weight_bounds
()[
0
];
config
[
"mf_max_bound"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
naive
().
weight_bounds
()[
1
];
}
}
else
if
(
optimizer_name
==
"adagrad"
)
{
config
[
"mf_learning_rate"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adagrad
().
learning_rate
();
config
[
"mf_initial_range"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adagrad
().
initial_range
();
config
[
"mf_initial_g2sum"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adagrad
().
initial_g2sum
();
if
(
sparse_table_accessor
.
embedx_sgd_param
()
.
adagrad
()
.
weight_bounds_size
()
==
2
)
{
config
[
"mf_min_bound"
]
=
sparse_table_accessor
.
embedx_sgd_param
()
.
adagrad
()
.
weight_bounds
()[
0
];
config
[
"mf_max_bound"
]
=
sparse_table_accessor
.
embedx_sgd_param
()
.
adagrad
()
.
weight_bounds
()[
1
];
}
}
else
if
(
optimizer_name
==
"std_adagrad"
)
{
config
[
"mf_learning_rate"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adagrad
().
learning_rate
();
config
[
"mf_initial_range"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adagrad
().
initial_range
();
config
[
"mf_initial_g2sum"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adagrad
().
initial_g2sum
();
if
(
sparse_table_accessor
.
embedx_sgd_param
()
.
adagrad
()
.
weight_bounds_size
()
==
2
)
{
config
[
"mf_min_bound"
]
=
sparse_table_accessor
.
embedx_sgd_param
()
.
adagrad
()
.
weight_bounds
()[
0
];
config
[
"mf_max_bound"
]
=
sparse_table_accessor
.
embedx_sgd_param
()
.
adagrad
()
.
weight_bounds
()[
1
];
}
}
else
if
(
optimizer_name
==
"adam"
)
{
config
[
"mf_learning_rate"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adam
().
learning_rate
();
config
[
"mf_initial_range"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adam
().
initial_range
();
if
(
sparse_table_accessor
.
embedx_sgd_param
()
.
adam
()
.
weight_bounds_size
()
==
2
)
{
config
[
"mf_min_bound"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adam
().
weight_bounds
()[
0
];
config
[
"mf_max_bound"
]
=
sparse_table_accessor
.
embedx_sgd_param
().
adam
().
weight_bounds
()[
1
];
}
}
config
[
"mf_create_thresholds"
]
=
sparse_table_accessor
.
embedx_threshold
();
// optimizer config for embed_w and embedx
add_sparse_optimizer
(
config
,
sparse_table_accessor
.
embed_sgd_param
());
add_sparse_optimizer
(
config
,
sparse_table_accessor
.
embedx_sgd_param
(),
"mf_"
);
}
auto
ps_gpu_wrapper
=
paddle
::
framework
::
PSGPUWrapper
::
GetInstance
();
ps_gpu_wrapper
->
InitializeGPUServer
(
config
);
}
...
...
paddle/fluid/framework/trainer.h
浏览文件 @
0ce42fb0
...
...
@@ -37,7 +37,7 @@ limitations under the License. */
#include "paddle/phi/backends/dynload/port.h"
#ifdef PADDLE_WITH_PSLIB
#include
<pslib.h>
#include
"proto/ps.pb.h"
#endif
namespace
paddle
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录