test_index_select_op.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
from op_test import OpTest, convert_float_to_uint16
19 20

import paddle
21 22 23
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard

24 25
np.random.seed(1024)

26 27 28

class TestIndexSelectOp(OpTest):
    def setUp(self):
F
From00 已提交
29
        self.python_api = paddle.index_select
30 31
        self.op_type = "index_select"
        self.init_dtype_type()
32 33 34
        index_np = np.random.randint(
            low=0, high=self.x_shape[self.dim], size=self.index_size
        )
35 36 37
        x_np = np.random.random(self.x_shape).astype(self.x_type)
        self.inputs = {'X': x_np, 'Index': index_np}
        self.attrs = {'dim': self.dim}
38 39
        outer_loop = np.prod(self.x_shape[: self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim :])
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                out_list.append(x_np_reshape[i, index_np[j]])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = self.index_size
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': out}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float64
        self.index_type = np.int64
        self.x_shape = (100, 4, 5)
        self.index_size = 100

    def test_check_output(self):
F
From00 已提交
60
        self.check_output(check_eager=True)
61 62

    def test_check_grad_normal(self):
F
From00 已提交
63
        self.check_grad(['X'], 'Out', check_eager=True)
64 65 66 67 68 69 70 71 72 73 74


class TestIndexSelectOpCase2(TestIndexSelectOp):
    def init_dtype_type(self):
        self.x_type = np.float32
        self.index_type = np.int32
        self.dim = -2
        self.x_shape = (10, 10, 4, 10)
        self.index_size = 10


75 76 77 78 79 80 81 82 83 84 85
class TestIndexSelectOpCaseSingleThread(TestIndexSelectOp):
    def init_dtype_type(self):
        if fluid.is_compiled_with_cuda():
            fluid.set_flags({'FLAGS_cudnn_deterministic': True})
        self.x_type = np.float32
        self.index_type = np.int32
        self.dim = -2
        self.x_shape = (10, 10, 4, 10)
        self.index_size = 10


86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
class TestIndexSelectFP16OP(TestIndexSelectOp):
    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float16
        self.index_type = np.int64
        self.x_shape = (100, 4, 5)
        self.index_size = 100


class TestIndexSelectBF16Op(OpTest):
    def setUp(self):
        self.python_api = paddle.index_select
        self.op_type = "index_select"
        self.init_dtype_type()
        index_np = np.random.randint(
            low=0, high=self.x_shape[self.dim], size=self.index_size
        )
        x_np = np.random.random(self.x_shape).astype(np.float32)
        self.inputs = {'X': convert_float_to_uint16(x_np), 'Index': index_np}
        self.attrs = {'dim': self.dim}
        outer_loop = np.prod(self.x_shape[: self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim :])
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                out_list.append(x_np_reshape[i, index_np[j]])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = self.index_size
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.uint16
        self.index_type = np.int64
124
        self.x_shape = (20, 4, 5)
125 126 127 128 129 130 131 132 133
        self.index_size = 100

    def test_check_output(self):
        self.check_output(check_eager=True)

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out', check_eager=True)


134 135
class TestIndexSelectAPI(unittest.TestCase):
    def input_data(self):
136 137 138 139 140 141
        self.data_x = np.array(
            [
                [1.0, 2.0, 3.0, 4.0],
                [5.0, 6.0, 7.0, 8.0],
                [9.0, 10.0, 11.0, 12.0],
            ]
142
        ).astype("float32")
143 144 145
        self.data_index = np.array([0, 1, 1]).astype('int32')

    def test_index_select_api(self):
146
        paddle.enable_static()
147 148 149 150
        self.input_data()

        # case 1:
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
151 152
            x = paddle.static.data(name='x', shape=[-1, 4])
            index = paddle.static.data(name='index', shape=[3], dtype='int32')
153
            z = paddle.index_select(x, index, axis=1)
154
            exe = fluid.Executor(fluid.CPUPlace())
155 156 157 158 159 160 161 162
            (res,) = exe.run(
                feed={'x': self.data_x, 'index': self.data_index},
                fetch_list=[z.name],
                return_numpy=False,
            )
        expect_out = np.array(
            [[1.0, 2.0, 2.0], [5.0, 6.0, 6.0], [9.0, 10.0, 10.0]]
        )
163
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
164 165 166

        # case 2:
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
167 168
            x = paddle.static.data(name='x', shape=[-1, 4])
            index = paddle.static.data(name='index', shape=[3], dtype='int32')
169 170
            z = paddle.index_select(x, index)
            exe = fluid.Executor(fluid.CPUPlace())
171 172 173 174 175 176 177 178
            (res,) = exe.run(
                feed={'x': self.data_x, 'index': self.data_index},
                fetch_list=[z.name],
                return_numpy=False,
            )
        expect_out = np.array(
            [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [5.0, 6.0, 7.0, 8.0]]
        )
179
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
180 181

    def test_dygraph_api(self):
182
        paddle.disable_static()
183 184 185 186 187 188 189
        self.input_data()
        # case 1:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.index_select(x, index)
            np_z = z.numpy()
190 191 192
        expect_out = np.array(
            [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [5.0, 6.0, 7.0, 8.0]]
        )
193
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
194 195 196 197 198

        # case 2:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
199
            z = paddle.index_select(x, index, axis=1)
200
            np_z = z.numpy()
201 202 203
        expect_out = np.array(
            [[1.0, 2.0, 2.0], [5.0, 6.0, 6.0], [9.0, 10.0, 10.0]]
        )
204
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
205 206 207 208


if __name__ == '__main__':
    unittest.main()