test_index_select_op.py 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
from op_test import OpTest, convert_float_to_uint16
19 20

import paddle
21 22 23 24 25 26
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestIndexSelectOp(OpTest):
    def setUp(self):
F
From00 已提交
27
        self.python_api = paddle.index_select
28 29
        self.op_type = "index_select"
        self.init_dtype_type()
30 31 32
        index_np = np.random.randint(
            low=0, high=self.x_shape[self.dim], size=self.index_size
        )
33 34 35
        x_np = np.random.random(self.x_shape).astype(self.x_type)
        self.inputs = {'X': x_np, 'Index': index_np}
        self.attrs = {'dim': self.dim}
36 37
        outer_loop = np.prod(self.x_shape[: self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim :])
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                out_list.append(x_np_reshape[i, index_np[j]])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = self.index_size
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': out}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float64
        self.index_type = np.int64
        self.x_shape = (100, 4, 5)
        self.index_size = 100

    def test_check_output(self):
F
From00 已提交
58
        self.check_output(check_eager=True)
59 60

    def test_check_grad_normal(self):
F
From00 已提交
61
        self.check_grad(['X'], 'Out', check_eager=True)
62 63 64 65 66 67 68 69 70 71 72


class TestIndexSelectOpCase2(TestIndexSelectOp):
    def init_dtype_type(self):
        self.x_type = np.float32
        self.index_type = np.int32
        self.dim = -2
        self.x_shape = (10, 10, 4, 10)
        self.index_size = 10


73 74 75 76 77 78 79 80 81 82 83
class TestIndexSelectOpCaseSingleThread(TestIndexSelectOp):
    def init_dtype_type(self):
        if fluid.is_compiled_with_cuda():
            fluid.set_flags({'FLAGS_cudnn_deterministic': True})
        self.x_type = np.float32
        self.index_type = np.int32
        self.dim = -2
        self.x_shape = (10, 10, 4, 10)
        self.index_size = 10


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
class TestIndexSelectFP16OP(TestIndexSelectOp):
    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.float16
        self.index_type = np.int64
        self.x_shape = (100, 4, 5)
        self.index_size = 100


class TestIndexSelectBF16Op(OpTest):
    def setUp(self):
        self.python_api = paddle.index_select
        self.op_type = "index_select"
        self.init_dtype_type()
        index_np = np.random.randint(
            low=0, high=self.x_shape[self.dim], size=self.index_size
        )
        x_np = np.random.random(self.x_shape).astype(np.float32)
        self.inputs = {'X': convert_float_to_uint16(x_np), 'Index': index_np}
        self.attrs = {'dim': self.dim}
        outer_loop = np.prod(self.x_shape[: self.dim])
        x_reshape = [outer_loop] + list(self.x_shape[self.dim :])
        x_np_reshape = np.reshape(x_np, tuple(x_reshape))
        out_list = []
        for i in range(outer_loop):
            for j in range(self.index_size):
                out_list.append(x_np_reshape[i, index_np[j]])
        self.out_shape = list(self.x_shape)
        self.out_shape[self.dim] = self.index_size
        self.out_shape = tuple(self.out_shape)

        out = np.reshape(out_list, self.out_shape)
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def init_dtype_type(self):
        self.dim = 1
        self.x_type = np.uint16
        self.index_type = np.int64
        self.x_shape = (100, 4, 5)
        self.index_size = 100

    def test_check_output(self):
        self.check_output(check_eager=True)

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out', check_eager=True)


132 133
class TestIndexSelectAPI(unittest.TestCase):
    def input_data(self):
134 135 136 137 138 139 140
        self.data_x = np.array(
            [
                [1.0, 2.0, 3.0, 4.0],
                [5.0, 6.0, 7.0, 8.0],
                [9.0, 10.0, 11.0, 12.0],
            ]
        )
141 142 143 144 145 146 147
        self.data_index = np.array([0, 1, 1]).astype('int32')

    def test_index_select_api(self):
        self.input_data()

        # case 1:
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
148 149
            x = paddle.static.data(name='x', shape=[-1, 4])
            index = paddle.static.data(name='index', shape=[3], dtype='int32')
150
            z = paddle.index_select(x, index, axis=1)
151
            exe = fluid.Executor(fluid.CPUPlace())
152 153 154 155 156 157 158 159
            (res,) = exe.run(
                feed={'x': self.data_x, 'index': self.data_index},
                fetch_list=[z.name],
                return_numpy=False,
            )
        expect_out = np.array(
            [[1.0, 2.0, 2.0], [5.0, 6.0, 6.0], [9.0, 10.0, 10.0]]
        )
160
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
161 162 163

        # case 2:
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
164 165
            x = paddle.static.data(name='x', shape=[-1, 4])
            index = paddle.static.data(name='index', shape=[3], dtype='int32')
166 167
            z = paddle.index_select(x, index)
            exe = fluid.Executor(fluid.CPUPlace())
168 169 170 171 172 173 174 175
            (res,) = exe.run(
                feed={'x': self.data_x, 'index': self.data_index},
                fetch_list=[z.name],
                return_numpy=False,
            )
        expect_out = np.array(
            [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [5.0, 6.0, 7.0, 8.0]]
        )
176
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
177 178 179 180 181 182 183 184 185

    def test_dygraph_api(self):
        self.input_data()
        # case 1:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
            z = paddle.index_select(x, index)
            np_z = z.numpy()
186 187 188
        expect_out = np.array(
            [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [5.0, 6.0, 7.0, 8.0]]
        )
189
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
190 191 192 193 194

        # case 2:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            index = fluid.dygraph.to_variable(self.data_index)
195
            z = paddle.index_select(x, index, axis=1)
196
            np_z = z.numpy()
197 198 199
        expect_out = np.array(
            [[1.0, 2.0, 2.0], [5.0, 6.0, 6.0], [9.0, 10.0, 10.0]]
        )
200
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
201 202 203 204


if __name__ == '__main__':
    unittest.main()