affine_grid_kernel.cu 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/kernels/affine_grid_kernel.h"
18

19 20 21 22 23 24 25
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/kernel_registry.h"
26
#include "paddle/phi/kernels/funcs/affine_grid_utils.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

namespace phi {

template <typename T>
__global__ void LinspaceKernel(T start, T step, int64_t size, T* out) {
  CUDA_KERNEL_LOOP(index, size) { out[index] = start + step * index; }
}

template <typename T>
struct Linspace<phi::GPUContext, T> {
  void operator()(T start,
                  T end,
                  int count,
                  bool align_corners,
                  DenseTensor* numbers,
                  const phi::GPUContext& dev_ctx) {
    numbers->Resize(phi::make_ddim({count}));
    T* number_data = dev_ctx.template Alloc<T>(numbers);
    T slice = (end - start) / (T)(count - 1);
    if (!align_corners) {
      slice = (end - start) / (T)count;
      start *= (T)(count - 1) / (T)count;
    }
    auto stream = dev_ctx.stream();
    int block = 512;
    int grid = (count + block - 1) / block;
    LinspaceKernel<T>
        <<<grid, block, 0, stream>>>(start, slice, count, number_data);
  }
};

template <typename T>
59 60 61 62 63 64 65 66 67 68
__global__ void affine_grid_kernel_4d(const int count,
                                      int n,
                                      int out_h,
                                      int out_w,
                                      T h_start,
                                      T w_start,
                                      T h_step,
                                      T w_step,
                                      const T* theta,  // N, 2, 3
                                      T* output) {
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  CUDA_KERNEL_LOOP(index, count) {
    int w = index % out_w;
    int h = (index / out_w) % out_h;
    int n = index / (out_w * out_h);

    T h_coor = h_step * static_cast<T>(h) + static_cast<T>(h_start);
    T w_coor = w_step * static_cast<T>(w) + static_cast<T>(w_start);

    int theta_offset = n * 6;  // 2 * 3;
    // affine from (h_coor, w_coor) to (x, y)
    output[index * 2] = theta[theta_offset] * w_coor +
                        theta[theta_offset + 1] * h_coor +
                        theta[theta_offset + 2];
    output[index * 2 + 1] = theta[theta_offset + 3] * w_coor +
                            theta[theta_offset + 4] * h_coor +
                            theta[theta_offset + 5];
  }
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
template <typename T>
__global__ void affine_grid_kernel_5d(const int count,
                                      int n,
                                      int out_d,
                                      int out_h,
                                      int out_w,
                                      T d_start,
                                      T h_start,
                                      T w_start,
                                      T d_step,
                                      T h_step,
                                      T w_step,
                                      const T* theta,  // N, 3, 4
                                      T* output) {
  CUDA_KERNEL_LOOP(index, count) {
    int w = index % out_w;
    int h = (index / out_w) % out_h;
    int d = (index / (out_w * out_h)) % out_d;
    int n = index / (out_w * out_h * out_d);

    T d_coor = d_step * static_cast<T>(d) + static_cast<T>(d_start);
    T h_coor = h_step * static_cast<T>(h) + static_cast<T>(h_start);
    T w_coor = w_step * static_cast<T>(w) + static_cast<T>(w_start);

    int theta_offset = n * 12;  // 3 * 4
    // affine from (h_coor, w_coor) to (x, y)
    output[index * 3] =
        theta[theta_offset] * w_coor + theta[theta_offset + 1] * h_coor +
        theta[theta_offset + 2] * d_coor + theta[theta_offset + 3];
    output[index * 3 + 1] =
        theta[theta_offset + 4] * w_coor + theta[theta_offset + 5] * h_coor +
        theta[theta_offset + 6] * d_coor + theta[theta_offset + 7];
    output[index * 3 + 2] =
        theta[theta_offset + 8] * w_coor + theta[theta_offset + 9] * h_coor +
        theta[theta_offset + 10] * d_coor + theta[theta_offset + 11];
  }
}

126
template <typename T, typename Context>
127 128 129 130 131 132
void AffineGrid4DCUDAKernel(const Context& dev_ctx,
                            const DenseTensor& input,
                            const IntArray& outputShape,
                            bool align_corners,
                            DenseTensor* output) {
  // VLOG(0) << "in affine grid 4d forward";
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  auto* theta = &input;
  int n = theta->dims()[0];
  auto& size_attr = outputShape.GetData();
  int h = 0;
  int w = 0;
  h = size_attr[2];
  w = size_attr[3];
  output->Resize(phi::make_ddim({n, h, w, 2}));
  T* out_data = dev_ctx.template Alloc<T>(output);

  T h_step;
  T w_step;
  T h_start = -1;
  T w_start = -1;
  if (align_corners) {
    h_step = static_cast<T>(2) / static_cast<T>(h - 1);
    w_step = static_cast<T>(2) / static_cast<T>(w - 1);
  } else {
    h_step = static_cast<T>(2) / static_cast<T>(h);
    w_step = static_cast<T>(2) / static_cast<T>(w);

    h_start *= static_cast<T>(h - 1) / static_cast<T>(h);
    w_start *= static_cast<T>(w - 1) / static_cast<T>(w);
  }

  const int count = n * h * w;
  int block = 512;
  int grid = (count + block - 1) / block;
  auto cu_stream = dev_ctx.stream();
162
  affine_grid_kernel_4d<<<grid, block, 0, cu_stream>>>(
163 164 165 166 167 168 169 170 171 172 173 174
      count,
      n,
      h,
      w,
      h_start,
      w_start,
      h_step,
      w_step,
      theta->data<T>(),  // N, 2, 3
      out_data);
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
template <typename T, typename Context>
void AffineGrid5DCUDAKernel(const Context& dev_ctx,
                            const DenseTensor& input,
                            const IntArray& outputShape,
                            bool align_corners,
                            DenseTensor* output) {
  auto* theta = &input;
  int n = theta->dims()[0];
  auto& size_attr = outputShape.GetData();
  int d = 0;
  int h = 0;
  int w = 0;
  d = size_attr[2];
  h = size_attr[3];
  w = size_attr[4];
  output->Resize(phi::make_ddim({n, d, h, w, 3}));
  T* out_data = dev_ctx.template Alloc<T>(output);

  T d_step;
  T h_step;
  T w_step;
  T d_start = -1;
  T h_start = -1;
  T w_start = -1;
  if (align_corners) {
    d_step = static_cast<T>(2) / static_cast<T>(d - 1);
    h_step = static_cast<T>(2) / static_cast<T>(h - 1);
    w_step = static_cast<T>(2) / static_cast<T>(w - 1);
  } else {
    d_step = static_cast<T>(2) / static_cast<T>(d);
    h_step = static_cast<T>(2) / static_cast<T>(h);
    w_step = static_cast<T>(2) / static_cast<T>(w);

    d_start *= static_cast<T>(d - 1) / static_cast<T>(d);
    h_start *= static_cast<T>(h - 1) / static_cast<T>(h);
    w_start *= static_cast<T>(w - 1) / static_cast<T>(w);
  }

  const int count = n * d * h * w;
  int block = 512;
  int grid = (count + block - 1) / block;
  auto cu_stream = dev_ctx.stream();
  affine_grid_kernel_5d<<<grid, block, 0, cu_stream>>>(
      count,
      n,
      d,
      h,
      w,
      d_start,
      h_start,
      w_start,
      d_step,
      h_step,
      w_step,
      theta->data<T>(),  // N, 3, 4
      out_data);
}

template <typename T, typename Context>
void AffineGridCUDAKernel(const Context& dev_ctx,
                          const DenseTensor& input,
                          const IntArray& outputShape,
                          bool align_corners,
                          DenseTensor* output) {
  auto* theta = &input;
  int theta_h = theta->dims()[1];
  if (theta_h == 2) {
    AffineGrid4DCUDAKernel<T, Context>(
        dev_ctx, input, outputShape, align_corners, output);
  } else {
    AffineGrid5DCUDAKernel<T, Context>(
        dev_ctx, input, outputShape, align_corners, output);
  }
}

250 251 252 253
}  // namespace phi

PD_REGISTER_KERNEL(
    affine_grid, GPU, ALL_LAYOUT, phi::AffineGridCUDAKernel, float, double){};