affine_grid_kernel.cu 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/kernels/affine_grid_kernel.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T>
__global__ void LinspaceKernel(T start, T step, int64_t size, T* out) {
  CUDA_KERNEL_LOOP(index, size) { out[index] = start + step * index; }
}

template <typename T>
struct Linspace<phi::GPUContext, T> {
  void operator()(T start,
                  T end,
                  int count,
                  bool align_corners,
                  DenseTensor* numbers,
                  const phi::GPUContext& dev_ctx) {
    numbers->Resize(phi::make_ddim({count}));
    T* number_data = dev_ctx.template Alloc<T>(numbers);
    T slice = (end - start) / (T)(count - 1);
    if (!align_corners) {
      slice = (end - start) / (T)count;
      start *= (T)(count - 1) / (T)count;
    }
    auto stream = dev_ctx.stream();
    int block = 512;
    int grid = (count + block - 1) / block;
    LinspaceKernel<T>
        <<<grid, block, 0, stream>>>(start, slice, count, number_data);
  }
};

template <typename T>
__global__ void affine_grid_kernel(const int count,
                                   int n,
                                   int out_h,
                                   int out_w,
                                   T h_start,
                                   T w_start,
                                   T h_step,
                                   T w_step,
                                   const T* theta,  // N, 2, 3
                                   T* output) {
  CUDA_KERNEL_LOOP(index, count) {
    int w = index % out_w;
    int h = (index / out_w) % out_h;
    int n = index / (out_w * out_h);

    T h_coor = h_step * static_cast<T>(h) + static_cast<T>(h_start);
    T w_coor = w_step * static_cast<T>(w) + static_cast<T>(w_start);

    int theta_offset = n * 6;  // 2 * 3;
    // affine from (h_coor, w_coor) to (x, y)
    output[index * 2] = theta[theta_offset] * w_coor +
                        theta[theta_offset + 1] * h_coor +
                        theta[theta_offset + 2];
    output[index * 2 + 1] = theta[theta_offset + 3] * w_coor +
                            theta[theta_offset + 4] * h_coor +
                            theta[theta_offset + 5];
  }
}

template <typename T, typename Context>
void AffineGridCUDAKernel(const Context& dev_ctx,
                          const DenseTensor& input,
                          const IntArray& outputShape,
                          bool align_corners,
                          DenseTensor* output) {
  auto* theta = &input;
  int n = theta->dims()[0];
  auto& size_attr = outputShape.GetData();
  int h = 0;
  int w = 0;
  h = size_attr[2];
  w = size_attr[3];
  output->Resize(phi::make_ddim({n, h, w, 2}));
  T* out_data = dev_ctx.template Alloc<T>(output);

  T h_step;
  T w_step;
  T h_start = -1;
  T w_start = -1;
  if (align_corners) {
    h_step = static_cast<T>(2) / static_cast<T>(h - 1);
    w_step = static_cast<T>(2) / static_cast<T>(w - 1);
  } else {
    h_step = static_cast<T>(2) / static_cast<T>(h);
    w_step = static_cast<T>(2) / static_cast<T>(w);

    h_start *= static_cast<T>(h - 1) / static_cast<T>(h);
    w_start *= static_cast<T>(w - 1) / static_cast<T>(w);
  }

  const int count = n * h * w;
  int block = 512;
  int grid = (count + block - 1) / block;
  auto cu_stream = dev_ctx.stream();
  affine_grid_kernel<<<grid, block, 0, cu_stream>>>(
      count,
      n,
      h,
      w,
      h_start,
      w_start,
      h_step,
      w_step,
      theta->data<T>(),  // N, 2, 3
      out_data);
}

}  // namespace phi

PD_REGISTER_KERNEL(
    affine_grid, GPU, ALL_LAYOUT, phi::AffineGridCUDAKernel, float, double){};