shuffle_batch_op.cc 6.2 KB
Newer Older
Z
zhoushiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/shuffle_batch_op.h"
16

Z
zhoushiyu 已提交
17
#include <memory>
18

Z
zhoushiyu 已提交
19 20 21 22 23 24 25 26 27 28 29
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {
class ShuffleBatchOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
30 31
        ctx->HasInput("X"),
        true,
Z
zhoushiyu 已提交
32 33
        platform::errors::NotFound("Input(X) should not be null."));
    PADDLE_ENFORCE_EQ(
34 35
        ctx->HasInput("Seed"),
        true,
Z
zhoushiyu 已提交
36 37
        platform::errors::NotFound("Input(Seed) should not be null."));
    PADDLE_ENFORCE_EQ(
38 39
        ctx->HasOutput("Out"),
        true,
Z
zhoushiyu 已提交
40 41
        platform::errors::NotFound("Output(Out) should not be null."));
    PADDLE_ENFORCE_EQ(
42 43
        ctx->HasOutput("ShuffleIdx"),
        true,
Z
zhoushiyu 已提交
44 45
        platform::errors::NotFound("Output(ShuffleIdx) should not be null."));
    PADDLE_ENFORCE_EQ(
46 47
        ctx->HasOutput("SeedOut"),
        true,
Z
zhoushiyu 已提交
48 49 50 51 52 53
        platform::errors::NotFound("Output(SeedOut) should not be null."));

    ctx->ShareDim("X", "Out");
    ctx->ShareLoD("X", "Out");
    ctx->ShareDim("Seed", "SeedOut");
    ctx->ShareLoD("Seed", "SeedOut");
54
    ctx->SetOutputDim("ShuffleIdx", phi::make_ddim({-1}));
Z
zhoushiyu 已提交
55 56 57 58 59 60 61 62
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
63 64

  framework::OpKernelType GetKernelTypeForVar(
65
      const std::string &var_name,
66
      const phi::DenseTensor &tensor,
67 68 69 70 71 72 73
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "Seed") {
      return expected_kernel_type;
    }
    return framework::OperatorWithKernel::GetKernelTypeForVar(
        var_name, tensor, expected_kernel_type);
  }
Z
zhoushiyu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
};

class ShuffleBatchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(LoDTensor) The input tensor of shuffle_batch op.");
    AddInput("Seed", "(LoDTensor) The input seed tensor.");
    AddAttr<int>(
        "startup_seed",
        "If input tensor 'Seed' is not initialized, the 'startup_seed' "
        "will be used to replace it. The seed after shuffle batch will "
        "be saved in 'SeedOut'. ")
        .SetDefault(0);
    AddOutput("Out", "(LoDTensor) The output tensor of shuffle_batch op.");
    AddOutput("ShuffleIdx", "(Tensor) Record forword shuffle order");
    AddOutput("SeedOut", "(LoDTensor) Saved new generated seed.");
    AddComment(R"DOC(
Shuffle Batch Operator.

This operator is used to shuffle input $X$'s elements.

There is 2 input. The product of input dims (except last dim) numbers of elements will be shuffled. $Seed$ is tensor of seed.

There are 3 outputs. $Out$ is shuffled tensor of input. $ShuffleIdx$ is the tensor used to record shuffle order. $SeedOut$ is same tensor of $Seed$.
)DOC");
  }
};

class ShuffleBatchOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
108 109
        ctx->HasInput("ShuffleIdx"),
        true,
Z
zhoushiyu 已提交
110 111
        platform::errors::NotFound("Input(ShuffleIdx) should not be null"));
    PADDLE_ENFORCE_EQ(
112 113
        ctx->HasInput(framework::GradVarName("Out")),
        true,
Z
zhoushiyu 已提交
114 115
        platform::errors::NotFound("Grad Input(Out) should not be null"));
    PADDLE_ENFORCE_EQ(
116 117
        ctx->HasOutput(framework::GradVarName("X")),
        true,
Z
zhoushiyu 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        platform::errors::NotFound("Grad Output(X) should not be null"));

    ctx->ShareDim(framework::GradVarName("Out"), framework::GradVarName("X"));
    ctx->ShareLoD(framework::GradVarName("Out"), framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

template <typename T>
class ShuffleBatchGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
139
  void Apply(GradOpPtr<T> op) const override {
Z
zhoushiyu 已提交
140 141 142 143 144 145 146 147 148 149 150 151
    op->SetType("shuffle_batch_grad");
    op->SetInput("ShuffleIdx", this->Output("ShuffleIdx"));
    op->SetAttrMap(this->Attrs());
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
152 153 154
REGISTER_OPERATOR(shuffle_batch,
                  ops::ShuffleBatchOp,
                  ops::ShuffleBatchOpMaker,
Z
zhoushiyu 已提交
155 156 157 158
                  ops::ShuffleBatchGradOpMaker<paddle::framework::OpDesc>,
                  ops::ShuffleBatchGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(shuffle_batch_grad, ops::ShuffleBatchOpGrad);

159 160
REGISTER_OP_CPU_KERNEL(shuffle_batch,
                       ops::ShuffleBatchKernel<float>,
Z
zhoushiyu 已提交
161 162 163 164
                       ops::ShuffleBatchKernel<double>,
                       ops::ShuffleBatchKernel<int32_t>,
                       ops::ShuffleBatchKernel<int64_t>);

165 166
REGISTER_OP_CPU_KERNEL(shuffle_batch_grad,
                       ops::ShuffleBatchGradKernel<float>,
Z
zhoushiyu 已提交
167 168 169
                       ops::ShuffleBatchGradKernel<double>,
                       ops::ShuffleBatchGradKernel<int32_t>,
                       ops::ShuffleBatchGradKernel<int64_t>);