shuffle_batch_op.cc 5.8 KB
Newer Older
Z
zhoushiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/shuffle_batch_op.h"
#include <memory>
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {
class ShuffleBatchOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Seed"), true,
        platform::errors::NotFound("Input(Seed) should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("ShuffleIdx"), true,
        platform::errors::NotFound("Output(ShuffleIdx) should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("SeedOut"), true,
        platform::errors::NotFound("Output(SeedOut) should not be null."));

    ctx->ShareDim("X", "Out");
    ctx->ShareLoD("X", "Out");
    ctx->ShareDim("Seed", "SeedOut");
    ctx->ShareLoD("Seed", "SeedOut");
    ctx->SetOutputDim("ShuffleIdx", framework::make_ddim({-1}));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class ShuffleBatchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(LoDTensor) The input tensor of shuffle_batch op.");
    AddInput("Seed", "(LoDTensor) The input seed tensor.");
    AddAttr<int>(
        "startup_seed",
        "If input tensor 'Seed' is not initialized, the 'startup_seed' "
        "will be used to replace it. The seed after shuffle batch will "
        "be saved in 'SeedOut'. ")
        .SetDefault(0);
    AddOutput("Out", "(LoDTensor) The output tensor of shuffle_batch op.");
    AddOutput("ShuffleIdx", "(Tensor) Record forword shuffle order");
    AddOutput("SeedOut", "(LoDTensor) Saved new generated seed.");
    AddComment(R"DOC(
Shuffle Batch Operator.

This operator is used to shuffle input $X$'s elements.

There is 2 input. The product of input dims (except last dim) numbers of elements will be shuffled. $Seed$ is tensor of seed.

There are 3 outputs. $Out$ is shuffled tensor of input. $ShuffleIdx$ is the tensor used to record shuffle order. $SeedOut$ is same tensor of $Seed$.
)DOC");
  }
};

class ShuffleBatchOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("ShuffleIdx"), true,
        platform::errors::NotFound("Input(ShuffleIdx) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::NotFound("Grad Input(Out) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::NotFound("Grad Output(X) should not be null"));

    ctx->ShareDim(framework::GradVarName("Out"), framework::GradVarName("X"));
    ctx->ShareLoD(framework::GradVarName("Out"), framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

template <typename T>
class ShuffleBatchGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
    op->SetType("shuffle_batch_grad");
    op->SetInput("ShuffleIdx", this->Output("ShuffleIdx"));
    op->SetAttrMap(this->Attrs());
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    return op;
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(shuffle_batch, ops::ShuffleBatchOp, ops::ShuffleBatchOpMaker,
                  ops::ShuffleBatchGradOpMaker<paddle::framework::OpDesc>,
                  ops::ShuffleBatchGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(shuffle_batch_grad, ops::ShuffleBatchOpGrad);

REGISTER_OP_CPU_KERNEL(shuffle_batch, ops::ShuffleBatchKernel<float>,
                       ops::ShuffleBatchKernel<double>,
                       ops::ShuffleBatchKernel<int32_t>,
                       ops::ShuffleBatchKernel<int64_t>);

REGISTER_OP_CPU_KERNEL(shuffle_batch_grad, ops::ShuffleBatchGradKernel<float>,
                       ops::ShuffleBatchGradKernel<double>,
                       ops::ShuffleBatchGradKernel<int32_t>,
                       ops::ShuffleBatchGradKernel<int64_t>);