backward.cc 10.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
Y
Yu Yang 已提交
16
#include "paddle/operators/net_op.h"
D
dongzhihong 已提交
17

D
dongzhihong 已提交
18
#include <list>
Y
Yu Yang 已提交
19 20
#include <memory>

21
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Y
Yu Yang 已提交
24 25 26 27

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
28 29 30 31 32 33 34 35 36 37 38
static inline std::unique_ptr<OperatorBase> CreateGradOp(
    const OperatorBase& op) {
  OpDescBind op_desc;
  op_desc.SetInputMap(op.Inputs());
  op_desc.SetOutputMap(op.Outputs());
  op_desc.SetType(op.Type());
  op_desc.SetAttrMap(op.Attrs());
  auto& info = OpInfoMap::Instance().Get(op.Type());
  auto grad_descs = info.grad_op_maker_(op_desc);
  std::vector<std::unique_ptr<OperatorBase>> grad_ops;
  grad_ops.reserve(grad_descs.size());
Y
Yu Yang 已提交
39 40 41 42 43
  std::transform(grad_descs.begin(), grad_descs.end(),
                 std::back_inserter(grad_ops),
                 [](const std::unique_ptr<OpDescBind>& grad_desc) {
                   return OpRegistry::CreateOp(grad_desc.get());
                 });
Y
Yu Yang 已提交
44 45 46 47 48 49 50 51 52 53 54 55
  PADDLE_ENFORCE_GT(grad_ops.size(), 0);
  if (grad_ops.size() == 1) {
    return std::move(grad_ops[0]);
  } else {
    auto net_op = new operators::NetOp();
    for (auto& grad_op : grad_ops) {
      net_op->AppendOp(std::move(grad_op));
    }
    return std::unique_ptr<OperatorBase>(net_op);
  }
}

Y
Yu Yang 已提交
56
template <typename Map, typename T>
Q
qiaolongfei 已提交
57
static void ForEachVarName(const Map& names, T callback) {
Y
Yu Yang 已提交
58
  for (auto& name : names) {
Y
Yu Yang 已提交
59
    for (auto& n : name.second) {
60
      if (callback(n)) return;
Y
Yu Yang 已提交
61 62
    }
  }
Y
Yu Yang 已提交
63 64
}

Y
Yan Chunwei 已提交
65
// return whether all the names + suffixes in the set
Y
Yu Yang 已提交
66
static bool AllInSet(
Y
Yu Yang 已提交
67
    const std::map<std::string, std::vector<std::string>>& names,
Y
Yu Yang 已提交
68
    const std::string& suffix, const std::unordered_set<std::string>& set) {
69 70 71 72
  bool all_in_set = true;
  ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
    all_in_set = set.find(n + suffix) != set.end();
    return !all_in_set;
Y
Yu Yang 已提交
73
  });
74
  return all_in_set;
Y
Yu Yang 已提交
75 76
}

Y
Yu Yang 已提交
77 78
static std::unique_ptr<OperatorBase> NOP() {
  auto net_op = new operators::NetOp();
Q
qiaolongfei 已提交
79
  net_op->SetType("@NOP@");
Y
Yu Yang 已提交
80
  net_op->CompleteAddOp();
Y
Yu Yang 已提交
81
  return std::unique_ptr<OperatorBase>(net_op);
Y
Yu Yang 已提交
82 83
}

Y
Yan Chunwei 已提交
84
//  Get backward operator from a forward operator, a recursive implementation.
Y
Yu Yang 已提交
85 86 87
//
//  no_grad_names the gradient variable names without gradient calculating.
//
88 89 90
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
91
//
Y
Yan Chunwei 已提交
92 93
//  returns The backward operator. In a simple situation, it may be a simple
//  operator, in a complex situation, it maybe a NetOp.
Y
Yu Yang 已提交
94 95
//
//  See Backward.h for details
Y
Yu Yang 已提交
96
static std::unique_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
97 98
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
Y
Yu Yang 已提交
99 100
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
Q
typo  
qiaolongfei 已提交
101
  //  too much time for calculation, but it is useful for simplifying logic.
102
  if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
103
               no_grad_names /*set*/)) {
Y
Yu Yang 已提交
104
    return NOP();
Y
Yu Yang 已提交
105 106
  }

107 108
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
109
  //  `no_grad_names` set. Return an NOP.
Q
qiaolongfei 已提交
110
  if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
111
               no_grad_names /*set*/)) {
Q
qiaolongfei 已提交
112
    ForEachVarName(forwardOp.Inputs(),
Y
Yu Yang 已提交
113 114 115 116
                   [&no_grad_names](const std::string& name) -> bool {
                     no_grad_names.insert(GradVarName(name));
                     return false;
                   });
Y
Yu Yang 已提交
117
    return NOP();
Y
Yu Yang 已提交
118 119
  }

Y
Yu Yang 已提交
120
  // Returned gradient network
Y
Yu Yang 已提交
121
  auto net = std::unique_ptr<operators::NetOp>(new operators::NetOp());
Y
Yu Yang 已提交
122 123

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
124
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
125
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
126

127
    // Map from output gradient variable name to operator's indices in
Y
Yan Chunwei 已提交
128
    // backward net's ops_. That operator generates that variable.
Y
Yu Yang 已提交
129 130 131
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yan Chunwei 已提交
132
    // reversely travel forwardNet and collect all duplicate outputs.
Y
Yu Yang 已提交
133
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
134
         ++it, ++local_op_id) {
Y
Yu Yang 已提交
135
      auto& fwd = *it;
Y
Yu Yang 已提交
136
      auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
Q
qiaolongfei 已提交
137
      ForEachVarName(bwd->Outputs(),
Y
Yu Yang 已提交
138 139 140 141
                     [&dup_output_ops, local_op_id](const std::string& out) {
                       dup_output_ops[out].emplace_back(local_op_id);
                       return false;
                     });
Y
Yu Yang 已提交
142
      net->AppendOp(std::move(bwd));
D
dongzhihong 已提交
143
    }
Y
Yu Yang 已提交
144
    // Get unique ID for this method.
D
dongzhihong 已提交
145
    auto uid = uniq_id++;
D
dongzhihong 已提交
146
    // TODO(dzh): more comment
Y
Yan Chunwei 已提交
147 148 149 150 151
    // multiple operators which have the same output (y for example) may
    // overwrite the same y variable when backward, special operations are token
    // to handle this case. For each duplicate output, rename it to an alias
    // (original name with a offset), append an `add` op for its operator,
    // and finally sum all the alias variable to the final output variable y.
Y
Yu Yang 已提交
152
    using Pos = std::pair<size_t, std::unique_ptr<OperatorBase>>;
Y
Yu Yang 已提交
153
    std::list<Pos> insert_position;
D
dongzhihong 已提交
154
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
155
      const std::string& name = dup_output_op.first;
Q
qijun 已提交
156 157 158
      // duplicate @Empty@ don't need to be added
      if (name == kEmptyVarName) continue;

D
dongzhihong 已提交
159
      auto& dup_op = dup_output_op.second;
Y
Yan Chunwei 已提交
160
      // no duplicate output
D
dongzhihong 已提交
161 162
      if (dup_op.size() == 1) continue;

Y
Yan Chunwei 已提交
163 164
      // process the duplicate outputs
      std::vector<std::string> dup_outputs;
D
dongzhihong 已提交
165
      for (size_t i = 0; i < dup_op.size(); ++i) {
Y
Yan Chunwei 已提交
166
        // rename each duplicate output to an alias
D
dongzhihong 已提交
167
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
168 169 170
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
171
      }
Y
Yan Chunwei 已提交
172
      // collect all the offset to append `add` op for each alias
D
dzhwinter 已提交
173 174 175
      //
      // one variable is shared between multiple operators.
      // insert add operator one by one, then add it to output
D
dongzhihong 已提交
176 177 178 179 180 181 182 183 184 185 186 187
      for (size_t output_idx = 0; output_idx < dup_outputs.size() - 1;
           ++output_idx) {
        auto insert_add_x = dup_outputs[output_idx];
        auto insert_add_y = dup_outputs[output_idx];
        auto insert_add_out = name + "@SHARED@" + std::to_string(output_idx);
        // first add op inserted
        if (output_idx == dup_outputs.size() - 2) {
          insert_add_out = name;
        }
        if (output_idx != 0) {
          insert_add_y = name + "@SHARED@" + std::to_string(output_idx - 1);
        }
D
dzhwinter 已提交
188 189 190
        insert_position.push_back(
            {dup_op.back(),
             OpRegistry::CreateOp(
D
dongzhihong 已提交
191
                 "sum", {{"X", {insert_add_x}}, {"X", {insert_add_y}}},
D
dongzhihong 已提交
192
                 {{"Out", {insert_add_out}}}, {})});
D
dzhwinter 已提交
193
      }
D
dongzhihong 已提交
194
    }
Y
Yu Yang 已提交
195

Y
Yan Chunwei 已提交
196
    // make sure the inserted `add` ops follow the BFS order.
Y
Yu Yang 已提交
197
    insert_position.sort(
D
dongzhihong 已提交
198
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
199 200

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
201
      net->InsertOp(pos.first + 1, std::move(pos.second));
D
dongzhihong 已提交
202
    }
Y
Yu Yang 已提交
203
  } else {
Y
Yu Yang 已提交
204 205
    std::unique_ptr<OperatorBase> grad_op(CreateGradOp(forwardOp));
    PADDLE_ENFORCE(grad_op != nullptr);
Y
Yu Yang 已提交
206

Y
Yu Yang 已提交
207 208
    ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op](
                                          const std::string& grad_input) {
209
      if (no_grad_names.count(grad_input)) {
Y
Yu Yang 已提交
210
        // +1 for \0
211
        std::string prefix = grad_input.substr(
Y
Yu Yang 已提交
212
            0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
Q
qiaolongfei 已提交
213
        grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
Y
Yu Yang 已提交
214 215 216

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
D
dangqingqing 已提交
217 218
        net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
                                           {{"Y", {grad_input}}}, {}));
219
      }
Y
Yu Yang 已提交
220 221 222
      return false;
    });

Q
qiaolongfei 已提交
223 224
    ForEachVarName(grad_op->Outputs(),
                   [&no_grad_names, &grad_op](const std::string& grad_output) {
Y
Yu Yang 已提交
225
                     if (no_grad_names.count(grad_output)) {
Q
qiaolongfei 已提交
226
                       grad_op->Rename(grad_output, kEmptyVarName);
Y
Yu Yang 已提交
227 228 229
                     }
                     return false;
                   });
Y
Yu Yang 已提交
230

Y
Yan Chunwei 已提交
231
    // process recurrent gradient op as a special operator.
232
    if (forwardOp.Type() == "recurrent") {
Y
Yan Chunwei 已提交
233 234 235 236 237 238 239 240 241 242
      // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), or
      // this will result in infinite loop.
      const auto& rnnop =
          *static_cast<const operators::RecurrentOp*>(&forwardOp);
      auto rnn_grad_op =
          static_cast<operators::RecurrentGradientOp*>(grad_op.get());
      const auto& stepnet_op =
          *static_cast<const OperatorBase*>(&rnnop.stepnet());
      // create stepnet's gradient op
      rnn_grad_op->set_stepnet(
Y
Yu Yang 已提交
243
          BackwardRecursive(stepnet_op, no_grad_names, uniq_id));
Y
Yan Chunwei 已提交
244 245
    }

Y
Yu Yang 已提交
246 247 248
    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
Y
Yu Yang 已提交
249
    net->AppendOp(std::move(grad_op));
Y
Yu Yang 已提交
250
  }
Q
qiaolongfei 已提交
251
  net->SetType("@GENERATED_BACKWARD@");
Y
Yu Yang 已提交
252
  net->CompleteAddOp();
Y
Yu Yang 已提交
253 254 255
  return std::unique_ptr<OperatorBase>(
      static_cast<OperatorBase*>(net.release()));
}
Y
Yu Yang 已提交
256

Y
Yu Yang 已提交
257
// See header for comments
Y
Yu Yang 已提交
258
std::unique_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
259
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
260 261
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
Q
qijun 已提交
262
  no_grad_names.reserve(no_grad_vars.size() + 1);
Y
Yu Yang 已提交
263

264
  no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
265

Y
Yu Yang 已提交
266
  for (auto& name : no_grad_vars) {
267
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
268
  }
Y
Yu Yang 已提交
269
  size_t uid = 0;
Y
Yu Yang 已提交
270
  return BackwardRecursive(forwardOp, no_grad_names, uid);
Y
Yu Yang 已提交
271
}
Y
Yi Wang 已提交
272

Y
Yu Yang 已提交
273 274
}  // namespace framework
}  // namespace paddle