test_reduce_op.py 31.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
import paddle
21 22 23
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
24
from paddle.fluid.framework import convert_np_dtype_to_dtype_
G
guosheng 已提交
25 26


27
class TestSumOp(OpTest):
G
guosheng 已提交
28
    def setUp(self):
29
        self.op_type = "reduce_sum"
30
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
31
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
32 33 34 35 36 37 38 39

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class TestSumOp_fp16(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.uniform(0, 0.1, (5, 6, 10)).astype("float16")
        }
        self.attrs = {'dim': [0, 1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
        self.gradient = self.calc_gradient()

    def test_check_output(self):
        self.check_output()

    def calc_gradient(self):
        x = self.inputs["X"]
        grad = np.ones(x.shape, dtype=x.dtype)
        return grad,

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSumOp_bf16(OpTest):
    def setUp(self):
        np.random.seed(100)
        self.op_type = "reduce_sum"
        self.dtype = np.uint16
        self.x = np.random.uniform(0, 0.1, (2, 5, 10)).astype(np.float32)
        self.attrs = {'dim': [0, 1, 2]}
        self.out = self.x.sum(axis=tuple(self.attrs['dim']))
        self.gradient = self.calc_gradient()

        self.inputs = {'X': convert_float_to_uint16(self.x)}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.gradient = self.calc_gradient()

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(
            place, ['X'], 'Out', user_defined_grads=self.gradient)

    def calc_gradient(self):
        x = self.x
        grad = np.ones(x.shape, dtype=x.dtype)
        return [grad]


95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class TestSumOp_fp16_withInt(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            # ref to https://en.wikipedia.org/wiki/Half-precision_floating-point_format
            # Precision limitations on integer values between 0 and 2048 can be exactly represented
            'X': np.random.randint(0, 30, (10, 10)).astype("float16")
        }
        self.attrs = {'dim': [0, 1]}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
        self.gradient = self.calc_gradient()

    def test_check_output(self):
        self.check_output()

    def calc_gradient(self):
        x = self.inputs["X"]
        grad = np.ones(x.shape, dtype=x.dtype)
        return grad,

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
class TestSumOp5D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestSumOp6D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
G
guosheng 已提交
143

144 145
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
146

147 148
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
149 150


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
class TestSumOp8D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 3, 1, 2, 1, 4, 3, 10)).astype("float64")
        }
        self.attrs = {'dim': (0, 3)}
        self.outputs = {'Out': self.inputs['X'].sum(axis=(0, 3))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


167 168 169
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
170 171
class TestMaxOp(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
172 173

    def setUp(self):
174
        self.op_type = "reduce_max"
175
        self.python_api = paddle.max
176
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
177 178 179 180
        self.attrs = {'dim': [-1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }
181 182

    def test_check_output(self):
183
        self.check_output(check_eager=True)
G
guosheng 已提交
184 185


186 187 188
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
189 190
class TestMinOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
191

192 193
    def setUp(self):
        self.op_type = "reduce_min"
194
        self.python_api = paddle.min
195
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
196 197 198 199
        self.attrs = {'dim': [2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
200

201
    def test_check_output(self):
202
        self.check_output(check_eager=True)
G
guosheng 已提交
203 204


205 206 207 208 209
class TestMin6DOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
210
        self.python_api = paddle.min
211 212 213 214 215 216 217 218 219
        self.inputs = {
            'X': np.random.random((2, 4, 3, 5, 6, 10)).astype("float64")
        }
        self.attrs = {'dim': [2, 4]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
220
        self.check_output(check_eager=True)
221 222 223 224 225 226 227


class TestMin8DOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
228
        self.python_api = paddle.min
229 230 231 232 233 234 235 236 237
        self.inputs = {
            'X': np.random.random((2, 4, 3, 5, 6, 3, 2, 4)).astype("float64")
        }
        self.attrs = {'dim': [2, 3, 4]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
238
        self.check_output(check_eager=True)
239 240


241 242 243
class TestProdOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
H
hong 已提交
244
        self.python_api = paddle.prod
245 246
        self.init_data_type()
        self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.data_type)}
247 248
        self.outputs = {'Out': self.inputs['X'].prod(axis=0)}

249 250 251 252
    def init_data_type(self):
        self.data_type = "float32" if core.is_compiled_with_rocm(
        ) else "float64"

253 254 255 256 257 258 259
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


260 261 262
class TestProd6DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
263
        self.init_data_type()
264
        self.inputs = {
265
            'X': np.random.random((5, 6, 2, 3, 4, 2)).astype(self.data_type)
266 267 268 269 270 271
        }
        self.attrs = {'dim': [2, 3, 4]}
        self.outputs = {
            'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim']))
        }

272 273 274 275
    def init_data_type(self):
        self.data_type = "float32" if core.is_compiled_with_rocm(
        ) else "float64"

276 277 278 279 280 281 282 283 284 285
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestProd8DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
286
        self.init_data_type()
287
        self.inputs = {
288 289
            'X': np.random.random(
                (2, 5, 3, 2, 2, 3, 4, 2)).astype(self.data_type)
290 291 292 293 294 295
        }
        self.attrs = {'dim': [2, 3, 4]}
        self.outputs = {
            'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim']))
        }

296 297 298 299
    def init_data_type(self):
        self.data_type = "float32" if core.is_compiled_with_rocm(
        ) else "float64"

300 301 302 303 304 305 306
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


Z
zhoukunsheng 已提交
307 308 309
class TestAllOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
310
        self.python_api = paddle.all
Z
zhoukunsheng 已提交
311 312 313 314 315
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].all()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
316
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
317 318


319 320 321
class TestAll8DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
322
        self.python_api = paddle.all
323 324 325 326 327 328 329 330
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'reduce_all': True, 'dim': (2, 3, 4)}
        self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])}

    def test_check_output(self):
331
        self.check_output(check_eager=True)
332 333


Z
zhoukunsheng 已提交
334 335 336
class TestAllOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
337
        self.python_api = paddle.all
Z
zhoukunsheng 已提交
338
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
339 340 341 342
        self.attrs = {'dim': (1, )}
        self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])}

    def test_check_output(self):
343
        self.check_output(check_eager=True)
344 345 346 347 348


class TestAll8DOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
349
        self.python_api = paddle.all
350 351 352 353 354 355
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (1, 3, 4)}
        self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])}
Z
zhoukunsheng 已提交
356 357

    def test_check_output(self):
358
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
359 360 361 362 363


class TestAllOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
364
        self.python_api = paddle.all
Z
zhoukunsheng 已提交
365 366 367 368 369 370 371 372
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=1), axis=1)
        }

    def test_check_output(self):
373
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
374 375


376 377 378
class TestAll8DOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
379
        self.python_api = paddle.all
380 381 382 383 384 385 386 387 388 389 390
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (5, ), 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=self.attrs['dim']), axis=5)
        }

    def test_check_output(self):
391
        self.check_output(check_eager=True)
392 393


394 395 396 397 398 399 400 401 402 403 404 405
class TestAllOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_all_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_all, input1)
            # The input dtype of reduce_all_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_all, input2)


Z
zhoukunsheng 已提交
406 407 408
class TestAnyOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
409
        self.python_api = paddle.any
Z
zhoukunsheng 已提交
410 411 412 413 414
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].any()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
415
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
416 417


418 419 420
class TestAny8DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
421
        self.python_api = paddle.any
422 423 424 425 426 427 428 429
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'reduce_all': True, 'dim': (3, 5, 4)}
        self.outputs = {'Out': self.inputs['X'].any(axis=self.attrs['dim'])}

    def test_check_output(self):
430
        self.check_output(check_eager=True)
431 432


Z
zhoukunsheng 已提交
433 434 435
class TestAnyOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
436
        self.python_api = paddle.any
Z
zhoukunsheng 已提交
437 438 439 440 441
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].any(axis=1)}

    def test_check_output(self):
442
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
443 444


445 446 447
class TestAny8DOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
448
        self.python_api = paddle.any
449 450 451 452 453 454 455 456
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (3, 6)}
        self.outputs = {'Out': self.inputs['X'].any(axis=self.attrs['dim'])}

    def test_check_output(self):
457
        self.check_output(check_eager=True)
458 459


Z
zhoukunsheng 已提交
460 461 462
class TestAnyOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
463
        self.python_api = paddle.any
Z
zhoukunsheng 已提交
464
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
465 466 467 468 469 470 471
        self.attrs = {'dim': (1, ), 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].any(axis=self.attrs['dim']), axis=1)
        }

    def test_check_output(self):
472
        self.check_output(check_eager=True)
473 474 475 476 477


class TestAny8DOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
478
        self.python_api = paddle.any
479 480 481 482 483
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (1, ), 'keep_dim': True}
Z
zhoukunsheng 已提交
484 485
        self.outputs = {
            'Out': np.expand_dims(
486
                self.inputs['X'].any(axis=self.attrs['dim']), axis=1)
Z
zhoukunsheng 已提交
487 488 489
        }

    def test_check_output(self):
490
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
491 492


493 494 495 496 497 498 499 500 501 502 503 504
class TestAnyOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_any_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_any, input1)
            # The input dtype of reduce_any_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_any, input2)


Q
qiaolongfei 已提交
505
class Test1DReduce(OpTest):
G
guosheng 已提交
506
    def setUp(self):
507
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
508
        self.inputs = {'X': np.random.random(120).astype("float64")}
Q
qiaolongfei 已提交
509
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
510 511 512

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
513

514 515
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
516 517


Q
qiaolongfei 已提交
518
class Test2DReduce0(Test1DReduce):
G
guosheng 已提交
519
    def setUp(self):
520
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
521 522
        self.attrs = {'dim': [0]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
523 524 525
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}


Q
qiaolongfei 已提交
526 527 528 529 530
class Test2DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
Q
qiaolongfei 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce2(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [-2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce3(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1, 2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
574 575


576 577 578 579 580 581 582 583 584 585 586 587
class Test8DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': (4, 2, 3)}
        self.inputs = {
            'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
        }
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


Q
qiaolongfei 已提交
588 589 590 591
class TestKeepDimReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
Q
qiaolongfei 已提交
592
        self.attrs = {'dim': [1], 'keep_dim': True}
Q
qiaolongfei 已提交
593 594 595 596 597 598
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


599 600 601 602 603 604 605 606 607 608 609 610 611
class TestKeepDim8DReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
        }
        self.attrs = {'dim': (3, 4, 5), 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


612 613 614
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
615 616 617 618 619
class TestReduceMaxOpMultiAxises(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_max"
620
        self.python_api = paddle.max
W
whs 已提交
621 622 623 624 625 626 627
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
628
        self.check_output(check_eager=True)
W
whs 已提交
629 630


631 632 633
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
634 635 636 637 638
class TestReduceMinOpMultiAxises(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
639
        self.python_api = paddle.min
W
whs 已提交
640 641 642 643 644 645 646
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
647
        self.check_output(check_eager=True)
W
whs 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666


class TestKeepDimReduceSumMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1], 'keep_dim': True}
        self.outputs = {
            'Out':
            self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


667 668 669
class TestReduceSumWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
670
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        self.attrs = {'dim': [1, 2], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceSumWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
687
        self.inputs = {'X': np.random.random((100, 1)).astype("float64")}
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceAll(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
704
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
705 706 707 708 709 710 711 712 713 714
        self.attrs = {'reduce_all': True, 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum()}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


715 716 717
class Test1DReduceWithAxes1(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
718
        self.inputs = {'X': np.random.random(100).astype("float64")}
719 720 721 722 723 724 725 726 727 728
        self.attrs = {'dim': [0], 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
class TestReduceWithDtype(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum().astype('float64')}
        self.attrs = {'reduce_all': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceWithDtype1(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1)}
        self.attrs = {'dim': [1]}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


class TestReduceWithDtype2(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1, keepdims=True)}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


771
class TestReduceSumOpError(unittest.TestCase):
772 773 774 775 776 777 778 779 780 781 782
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_sum_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x1)
            # The input dtype of reduce_sum_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x2)


783
class API_TestSumOp(unittest.TestCase):
784 785 786 787 788 789 790 791
    def run_static(self,
                   shape,
                   x_dtype,
                   attr_axis,
                   attr_dtype=None,
                   np_axis=None):
        if np_axis is None:
            np_axis = attr_axis
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data("data", shape=shape, dtype=x_dtype)
                result_sum = paddle.sum(x=data,
                                        axis=attr_axis,
                                        dtype=attr_dtype)

                exe = fluid.Executor(place)
                input_data = np.random.rand(*shape).astype(x_dtype)
                res, = exe.run(feed={"data": input_data},
                               fetch_list=[result_sum])

            self.assertTrue(
                np.allclose(
                    res, np.sum(input_data.astype(attr_dtype), axis=np_axis)))
811

812 813 814 815
    def test_static(self):
        shape = [10, 10]
        axis = 1

816 817 818
        self.run_static(shape, "bool", axis, attr_dtype=None)
        self.run_static(shape, "bool", axis, attr_dtype="int32")
        self.run_static(shape, "bool", axis, attr_dtype="int64")
819
        self.run_static(shape, "bool", axis, attr_dtype="float16")
820

821 822 823
        self.run_static(shape, "int32", axis, attr_dtype=None)
        self.run_static(shape, "int32", axis, attr_dtype="int32")
        self.run_static(shape, "int32", axis, attr_dtype="int64")
824
        self.run_static(shape, "int32", axis, attr_dtype="float64")
825

826 827 828 829
        self.run_static(shape, "int64", axis, attr_dtype=None)
        self.run_static(shape, "int64", axis, attr_dtype="int64")
        self.run_static(shape, "int64", axis, attr_dtype="int32")

830 831 832
        self.run_static(shape, "float32", axis, attr_dtype=None)
        self.run_static(shape, "float32", axis, attr_dtype="float32")
        self.run_static(shape, "float32", axis, attr_dtype="float64")
833
        self.run_static(shape, "float32", axis, attr_dtype="int64")
834 835 836 837

        self.run_static(shape, "float64", axis, attr_dtype=None)
        self.run_static(shape, "float64", axis, attr_dtype="float32")
        self.run_static(shape, "float64", axis, attr_dtype="float64")
838 839 840 841 842

        shape = [5, 5, 5]
        self.run_static(shape, "int32", (0, 1), attr_dtype="int32")
        self.run_static(
            shape, "int32", (), attr_dtype="int32", np_axis=(0, 1, 2))
843 844 845

    def test_dygraph(self):
        np_x = np.random.random([2, 3, 4]).astype('int32')
846 847
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np_x)
848 849 850 851 852 853 854 855 856
            out0 = paddle.sum(x).numpy()
            out1 = paddle.sum(x, axis=0).numpy()
            out2 = paddle.sum(x, axis=(0, 1)).numpy()
            out3 = paddle.sum(x, axis=(0, 1, 2)).numpy()

        self.assertTrue((out0 == np.sum(np_x, axis=(0, 1, 2))).all())
        self.assertTrue((out1 == np.sum(np_x, axis=0)).all())
        self.assertTrue((out2 == np.sum(np_x, axis=(0, 1))).all())
        self.assertTrue((out3 == np.sum(np_x, axis=(0, 1, 2))).all())
857 858


859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
class TestAllAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        paddle.enable_static()
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="bool")
            result = paddle.all(x=input)
            input_np = np.random.randint(0, 2, [4, 4]).astype("bool")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], np.all(input_np)))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        paddle.disable_static()
        for place in self.places:
            with fluid.dygraph.guard(place):
                np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool)
                x = fluid.layers.assign(np_x)
                x = fluid.layers.cast(x, 'bool')

                out1 = paddle.all(x)
                np_out1 = out1.numpy()
                expect_res1 = np.all(np_x)
                self.assertTrue((np_out1 == expect_res1).all())

                out2 = paddle.all(x, axis=0)
                np_out2 = out2.numpy()
                expect_res2 = np.all(np_x, axis=0)
                self.assertTrue((np_out2 == expect_res2).all())

                out3 = paddle.all(x, axis=-1)
                np_out3 = out3.numpy()
                expect_res3 = np.all(np_x, axis=-1)
                self.assertTrue((np_out3 == expect_res3).all())

                out4 = paddle.all(x, axis=1, keepdim=True)
                np_out4 = out4.numpy()
                expect_res4 = np.all(np_x, axis=1, keepdims=True)
                self.assertTrue((np_out4 == expect_res4).all())

        paddle.enable_static()


class TestAnyAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        paddle.enable_static()
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="bool")
            result = paddle.any(x=input)
            input_np = np.random.randint(0, 2, [4, 4]).astype("bool")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], np.any(input_np)))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        paddle.disable_static()
        for place in self.places:
            with fluid.dygraph.guard(place):
                np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool)
                x = fluid.layers.assign(np_x)
                x = fluid.layers.cast(x, 'bool')

                out1 = paddle.any(x)
                np_out1 = out1.numpy()
                expect_res1 = np.any(np_x)
                self.assertTrue((np_out1 == expect_res1).all())

                out2 = paddle.any(x, axis=0)
                np_out2 = out2.numpy()
                expect_res2 = np.any(np_x, axis=0)
                self.assertTrue((np_out2 == expect_res2).all())

                out3 = paddle.any(x, axis=-1)
                np_out3 = out3.numpy()
                expect_res3 = np.any(np_x, axis=-1)
                self.assertTrue((np_out3 == expect_res3).all())

                out4 = paddle.any(x, axis=1, keepdim=True)
                np_out4 = out4.numpy()
                expect_res4 = np.any(np_x, axis=1, keepdims=True)
                self.assertTrue((np_out4 == expect_res4).all())

        paddle.enable_static()


G
guosheng 已提交
969
if __name__ == '__main__':
970 971
    import paddle
    paddle.enable_static()
G
guosheng 已提交
972
    unittest.main()