test_reduce_op.py 29.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
20
import paddle
21 22 23
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
24
from paddle.fluid.framework import convert_np_dtype_to_dtype_
G
guosheng 已提交
25 26


27
class TestSumOp(OpTest):
G
guosheng 已提交
28
    def setUp(self):
29
        self.op_type = "reduce_sum"
30
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
31
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestSumOp5D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestSumOp6D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
G
guosheng 已提交
62

63 64
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
65

66 67
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
68 69


70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
class TestSumOp8D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 3, 1, 2, 1, 4, 3, 10)).astype("float64")
        }
        self.attrs = {'dim': (0, 3)}
        self.outputs = {'Out': self.inputs['X'].sum(axis=(0, 3))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


86 87 88
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
89 90
class TestMaxOp(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
91 92

    def setUp(self):
93
        self.op_type = "reduce_max"
94
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
95 96 97 98
        self.attrs = {'dim': [-1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }
99 100 101

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
102 103


104 105 106
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
107 108
class TestMinOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
109

110 111
    def setUp(self):
        self.op_type = "reduce_min"
112
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
113 114 115 116
        self.attrs = {'dim': [2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
117

118 119
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
120 121


122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
class TestMin6DOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
        self.inputs = {
            'X': np.random.random((2, 4, 3, 5, 6, 10)).astype("float64")
        }
        self.attrs = {'dim': [2, 4]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestMin8DOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
        self.inputs = {
            'X': np.random.random((2, 4, 3, 5, 6, 3, 2, 4)).astype("float64")
        }
        self.attrs = {'dim': [2, 3, 4]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


156 157 158
class TestProdOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
159 160
        self.init_data_type()
        self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.data_type)}
161 162
        self.outputs = {'Out': self.inputs['X'].prod(axis=0)}

163 164 165 166
    def init_data_type(self):
        self.data_type = "float32" if core.is_compiled_with_rocm(
        ) else "float64"

167 168 169 170 171 172 173
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


174 175 176
class TestProd6DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
177
        self.init_data_type()
178
        self.inputs = {
179
            'X': np.random.random((5, 6, 2, 3, 4, 2)).astype(self.data_type)
180 181 182 183 184 185
        }
        self.attrs = {'dim': [2, 3, 4]}
        self.outputs = {
            'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim']))
        }

186 187 188 189
    def init_data_type(self):
        self.data_type = "float32" if core.is_compiled_with_rocm(
        ) else "float64"

190 191 192 193 194 195 196 197 198 199
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestProd8DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
200
        self.init_data_type()
201
        self.inputs = {
202 203
            'X': np.random.random(
                (2, 5, 3, 2, 2, 3, 4, 2)).astype(self.data_type)
204 205 206 207 208 209
        }
        self.attrs = {'dim': [2, 3, 4]}
        self.outputs = {
            'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim']))
        }

210 211 212 213
    def init_data_type(self):
        self.data_type = "float32" if core.is_compiled_with_rocm(
        ) else "float64"

214 215 216 217 218 219 220
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


Z
zhoukunsheng 已提交
221 222 223 224 225 226 227 228 229 230 231
class TestAllOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].all()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


232 233 234 235 236 237 238 239 240 241 242 243 244 245
class TestAll8DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'reduce_all': True, 'dim': (2, 3, 4)}
        self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])}

    def test_check_output(self):
        self.check_output()


Z
zhoukunsheng 已提交
246 247 248 249
class TestAllOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        self.attrs = {'dim': (1, )}
        self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])}

    def test_check_output(self):
        self.check_output()


class TestAll8DOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (1, 3, 4)}
        self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])}
Z
zhoukunsheng 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    def test_check_output(self):
        self.check_output()


class TestAllOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=1), axis=1)
        }

    def test_check_output(self):
        self.check_output()


285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class TestAll8DOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (5, ), 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=self.attrs['dim']), axis=5)
        }

    def test_check_output(self):
        self.check_output()


302 303 304 305 306 307 308 309 310 311 312 313
class TestAllOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_all_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_all, input1)
            # The input dtype of reduce_all_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_all, input2)


Z
zhoukunsheng 已提交
314 315 316 317 318 319 320 321 322 323 324
class TestAnyOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].any()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


325 326 327 328 329 330 331 332 333 334 335 336 337 338
class TestAny8DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'reduce_all': True, 'dim': (3, 5, 4)}
        self.outputs = {'Out': self.inputs['X'].any(axis=self.attrs['dim'])}

    def test_check_output(self):
        self.check_output()


Z
zhoukunsheng 已提交
339 340 341 342 343 344 345 346 347 348 349
class TestAnyOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].any(axis=1)}

    def test_check_output(self):
        self.check_output()


350 351 352 353 354 355 356 357 358 359 360 361 362 363
class TestAny8DOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (3, 6)}
        self.outputs = {'Out': self.inputs['X'].any(axis=self.attrs['dim'])}

    def test_check_output(self):
        self.check_output()


Z
zhoukunsheng 已提交
364 365 366 367
class TestAnyOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        self.attrs = {'dim': (1, ), 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].any(axis=self.attrs['dim']), axis=1)
        }

    def test_check_output(self):
        self.check_output()


class TestAny8DOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (1, ), 'keep_dim': True}
Z
zhoukunsheng 已提交
386 387
        self.outputs = {
            'Out': np.expand_dims(
388
                self.inputs['X'].any(axis=self.attrs['dim']), axis=1)
Z
zhoukunsheng 已提交
389 390 391 392 393 394
        }

    def test_check_output(self):
        self.check_output()


395 396 397 398 399 400 401 402 403 404 405 406
class TestAnyOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_any_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_any, input1)
            # The input dtype of reduce_any_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_any, input2)


Q
qiaolongfei 已提交
407
class Test1DReduce(OpTest):
G
guosheng 已提交
408
    def setUp(self):
409
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
410
        self.inputs = {'X': np.random.random(120).astype("float64")}
Q
qiaolongfei 已提交
411
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
412 413 414

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
415

416 417
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
418 419


Q
qiaolongfei 已提交
420
class Test2DReduce0(Test1DReduce):
G
guosheng 已提交
421
    def setUp(self):
422
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
423 424
        self.attrs = {'dim': [0]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
425 426 427
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}


Q
qiaolongfei 已提交
428 429 430 431 432
class Test2DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
Q
qiaolongfei 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce2(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [-2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce3(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1, 2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
476 477


478 479 480 481 482 483 484 485 486 487 488 489
class Test8DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': (4, 2, 3)}
        self.inputs = {
            'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
        }
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


Q
qiaolongfei 已提交
490 491 492 493
class TestKeepDimReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
Q
qiaolongfei 已提交
494
        self.attrs = {'dim': [1], 'keep_dim': True}
Q
qiaolongfei 已提交
495 496 497 498 499 500
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


501 502 503 504 505 506 507 508 509 510 511 512 513
class TestKeepDim8DReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
        }
        self.attrs = {'dim': (3, 4, 5), 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


Q
qiaolongfei 已提交
514
class TestReduceAll(Test1DReduce):
515 516
    def setUp(self):
        self.op_type = "reduce_sum"
517
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
518 519 520 521
        self.attrs = {'reduce_all': True}
        self.outputs = {'Out': self.inputs['X'].sum()}


522 523 524 525 526 527 528 529 530 531
class TestReduceAll(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
        }
        self.attrs = {'reduce_all': True, 'dim': (3, 4, 5)}
        self.outputs = {'Out': self.inputs['X'].sum(axis=self.attrs['dim'])}


532 533 534
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
class TestReduceMaxOpMultiAxises(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_max"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


550 551 552
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
class TestReduceMinOpMultiAxises(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestKeepDimReduceSumMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1], 'keep_dim': True}
        self.outputs = {
            'Out':
            self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


585 586 587
class TestReduceSumWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
588
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        self.attrs = {'dim': [1, 2], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceSumWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
605
        self.inputs = {'X': np.random.random((100, 1)).astype("float64")}
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceAll(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
622
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
623 624 625 626 627 628 629 630 631 632
        self.attrs = {'reduce_all': True, 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum()}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


633 634 635
class Test1DReduceWithAxes1(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
636
        self.inputs = {'X': np.random.random(100).astype("float64")}
637 638 639 640 641 642 643 644 645 646
        self.attrs = {'dim': [0], 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
class TestReduceWithDtype(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum().astype('float64')}
        self.attrs = {'reduce_all': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceWithDtype1(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1)}
        self.attrs = {'dim': [1]}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


class TestReduceWithDtype2(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1, keepdims=True)}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


689
class TestReduceSumOpError(unittest.TestCase):
690 691 692 693 694 695 696 697 698 699 700
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_sum_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x1)
            # The input dtype of reduce_sum_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x2)


701 702 703 704
class API_TestSumOpError(unittest.TestCase):
    def test_errors(self):
        def test_dtype1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
705 706
                data = fluid.data(name="data", shape=[10], dtype="float64")
                paddle.sum(data, dtype="float32")
707 708 709 710 711

        self.assertRaises(ValueError, test_dtype1)

        def test_dtype2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
712 713
                data = fluid.data(name="data", shape=[10], dtype="int64")
                paddle.sum(data, dtype="int32")
714 715 716 717 718

        self.assertRaises(ValueError, test_dtype2)

        def test_dtype3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
719 720
                data = fluid.data(name="data", shape=[10], dtype="float64")
                paddle.sum(data, dtype="int32")
721 722 723

        self.assertRaises(ValueError, test_dtype3)

724
        def test_type():
725 726
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="int32")
727
                paddle.sum(data, dtype="bool")
728

729
        self.assertRaises(TypeError, test_type)
730 731 732


class API_TestSumOp(unittest.TestCase):
733 734 735 736 737 738 739 740
    def run_static(self,
                   shape,
                   x_dtype,
                   attr_axis,
                   attr_dtype=None,
                   np_axis=None):
        if np_axis is None:
            np_axis = attr_axis
741 742

        with fluid.program_guard(fluid.Program(), fluid.Program()):
743 744
            data = fluid.data("data", shape=shape, dtype=x_dtype)
            result_sum = paddle.sum(x=data, axis=attr_axis, dtype=attr_dtype)
745

746 747
            exe = fluid.Executor(fluid.CPUPlace())
            input_data = np.random.rand(*shape).astype(x_dtype)
748 749
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])

750 751 752
        self.assertTrue(
            np.allclose(
                res, np.sum(input_data.astype(attr_dtype), axis=np_axis)))
753

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    def test_static(self):
        shape = [10, 10]
        axis = 1

        self.run_static(shape, "int32", axis, attr_dtype=None)
        self.run_static(shape, "int32", axis, attr_dtype="int32")
        self.run_static(shape, "int32", axis, attr_dtype="int64")

        self.run_static(shape, "float32", axis, attr_dtype=None)
        self.run_static(shape, "float32", axis, attr_dtype="float32")
        self.run_static(shape, "float32", axis, attr_dtype="float64")

        shape = [5, 5, 5]
        self.run_static(shape, "int32", (0, 1), attr_dtype="int32")
        self.run_static(
            shape, "int32", (), attr_dtype="int32", np_axis=(0, 1, 2))
770 771 772

    def test_dygraph(self):
        np_x = np.random.random([2, 3, 4]).astype('int32')
773 774
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np_x)
775 776 777 778 779 780 781 782 783
            out0 = paddle.sum(x).numpy()
            out1 = paddle.sum(x, axis=0).numpy()
            out2 = paddle.sum(x, axis=(0, 1)).numpy()
            out3 = paddle.sum(x, axis=(0, 1, 2)).numpy()

        self.assertTrue((out0 == np.sum(np_x, axis=(0, 1, 2))).all())
        self.assertTrue((out1 == np.sum(np_x, axis=0)).all())
        self.assertTrue((out2 == np.sum(np_x, axis=(0, 1))).all())
        self.assertTrue((out3 == np.sum(np_x, axis=(0, 1, 2))).all())
784 785


786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
class TestAllAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        paddle.enable_static()
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="bool")
            result = paddle.all(x=input)
            input_np = np.random.randint(0, 2, [4, 4]).astype("bool")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], np.all(input_np)))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        paddle.disable_static()
        for place in self.places:
            with fluid.dygraph.guard(place):
                np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool)
                x = fluid.layers.assign(np_x)
                x = fluid.layers.cast(x, 'bool')

                out1 = paddle.all(x)
                np_out1 = out1.numpy()
                expect_res1 = np.all(np_x)
                self.assertTrue((np_out1 == expect_res1).all())

                out2 = paddle.all(x, axis=0)
                np_out2 = out2.numpy()
                expect_res2 = np.all(np_x, axis=0)
                self.assertTrue((np_out2 == expect_res2).all())

                out3 = paddle.all(x, axis=-1)
                np_out3 = out3.numpy()
                expect_res3 = np.all(np_x, axis=-1)
                self.assertTrue((np_out3 == expect_res3).all())

                out4 = paddle.all(x, axis=1, keepdim=True)
                np_out4 = out4.numpy()
                expect_res4 = np.all(np_x, axis=1, keepdims=True)
                self.assertTrue((np_out4 == expect_res4).all())

        paddle.enable_static()


class TestAnyAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        paddle.enable_static()
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="bool")
            result = paddle.any(x=input)
            input_np = np.random.randint(0, 2, [4, 4]).astype("bool")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], np.any(input_np)))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        paddle.disable_static()
        for place in self.places:
            with fluid.dygraph.guard(place):
                np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool)
                x = fluid.layers.assign(np_x)
                x = fluid.layers.cast(x, 'bool')

                out1 = paddle.any(x)
                np_out1 = out1.numpy()
                expect_res1 = np.any(np_x)
                self.assertTrue((np_out1 == expect_res1).all())

                out2 = paddle.any(x, axis=0)
                np_out2 = out2.numpy()
                expect_res2 = np.any(np_x, axis=0)
                self.assertTrue((np_out2 == expect_res2).all())

                out3 = paddle.any(x, axis=-1)
                np_out3 = out3.numpy()
                expect_res3 = np.any(np_x, axis=-1)
                self.assertTrue((np_out3 == expect_res3).all())

                out4 = paddle.any(x, axis=1, keepdim=True)
                np_out4 = out4.numpy()
                expect_res4 = np.any(np_x, axis=1, keepdims=True)
                self.assertTrue((np_out4 == expect_res4).all())

        paddle.enable_static()


G
guosheng 已提交
896
if __name__ == '__main__':
897 898
    import paddle
    paddle.enable_static()
G
guosheng 已提交
899
    unittest.main()