tensor.cc 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/include/tensor.h"
16 17 18 19 20 21

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22

23
#include "paddle/phi/api/include/context_pool.h"
24
#include "paddle/phi/api/lib/utils/allocator.h"
25
#include "paddle/phi/backends/gpu/gpu_context.h"
26 27
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"
28
#include "paddle/phi/core/dense_tensor.h"
29
#include "paddle/phi/core/enforce.h"
30
#include "paddle/phi/core/selected_rows.h"
31 32
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
33
#include "paddle/phi/core/string_tensor.h"
34 35 36
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/tensor_utils.h"
37
// clang-format off
38 39 40 41 42 43 44 45

namespace paddle {
namespace experimental {

/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

46
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl)
47
    : impl_(std::move(tensor_impl)) {
48 49 50
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::InvalidArgument("TensorImpl with nullptr is not supported"));
51 52
}

53 54 55 56 57 58 59 60 61
Tensor::Tensor(const Place &place) {
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place) constructor is deprecated since version "
         "2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place`, and datatype, shape, layout, etc. is also "
         "required.";
62
  DefaultAllocator alloc(place);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({}), phi::DataLayout::NCHW))));
}

Tensor::Tensor(const Place &place, const std::vector<int64_t> &shape) {
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place, shape) constructor is deprecated since "
         "version 2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place` and `shape`, and datatype, layout, etc. is also "
         "required.";
78
  DefaultAllocator alloc(place);
79 80 81 82 83 84
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(phi::DataType::FLOAT32,
                                     phi::make_ddim({shape}),
                                     phi::DataLayout::NCHW))));
}
85

86
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl,
87 88
               const std::string &name)
    : impl_(std::move(tensor_impl)), name_(std::move(name)) {}
89

90 91 92 93 94 95
/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

96
const phi::DDim &Tensor::dims() const { return impl_->dims(); }
97 98

std::vector<int64_t> Tensor::shape() const {
99 100
  auto dims = impl_->dims();
  return phi::vectorize<int64_t>(dims);
101 102 103
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
104 105 106 107 108 109 110 111 112
  LOG_FIRST_N(WARNING, 1)
      << "The function of resetting the shape of the uninitialized "
         "Tensor of the `reshape` method is deprecated since version "
         "2.3, and will be removed in version 2.4, please use "
         "`paddle::empty/full` method to create a new Tensor "
         "instead. "
         "reason: `reshape` means changing the tensor shape without "
         "touching underlying data, this requires the total size of "
         "the tensor to remain constant.";
C
Chen Weihang 已提交
113
  if (is_dense_tensor()) {
114
    static_cast<phi::DenseTensor *>(impl_.get())->Resize(phi::make_ddim(shape));
115
  } else {
116
    PADDLE_THROW(phi::errors::Unimplemented(
117 118
        "Only support reshape operation on DenseTensor now."));
  }
119 120
}

121
DataType Tensor::dtype() const { return impl_->dtype(); }
122

123
DataType Tensor::type() const { return impl_->dtype(); }
124 125 126

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
127
bool Tensor::is_dense_tensor() const {
128
  return phi::DenseTensor::classof(impl_.get());
C
Chen Weihang 已提交
129
}
130
bool Tensor::is_selected_rows() const {
131
  return phi::SelectedRows::classof(impl_.get());
132
}
133 134 135 136 137 138
bool Tensor::is_sparse_coo_tensor() const {
  return phi::SparseCooTensor::classof(impl_.get());
}
bool Tensor::is_sparse_csr_tensor() const {
  return phi::SparseCsrTensor::classof(impl_.get());
}
139 140 141
bool Tensor::is_string_tensor() const {
  return phi::StringTensor::classof(impl_.get());
}
142 143
/* Part 3: Device and Backend methods */

144
const Place &Tensor::place() const {
145 146 147 148
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::PermissionDenied(
          "Null pointer error, the impl_ of Tensor should not be "
149
          "Null when calling Tensor::place()."));
150
  return impl_->place();
151
}
152

153
bool Tensor::is_cpu() const { return paddle::platform::is_cpu_place(place()); }
154

155
bool Tensor::is_gpu() const { return paddle::platform::is_gpu_place(place()); }
156

157
bool Tensor::is_gpu_pinned() const {
158
  return paddle::platform::is_cuda_pinned_place(place());
159 160
}

161 162 163 164
/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
165 166 167 168 169 170 171 172 173 174
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the place, datatype, and data layout of tensor may be in "
         "an illegal state.";
C
Chen Weihang 已提交
175
  if (is_dense_tensor()) {
176 177
    return static_cast<phi::DenseTensor *>(impl_.get())
        ->mutable_data<T>(place());
178 179 180 181
  }
  return nullptr;
}

182 183 184 185 186 187 188 189
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
190 191 192 193 194 195
template PADDLE_API phi::dtype::complex<float>
    *Tensor::mutable_data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::mutable_data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>();
196 197

template <typename T>
198 199 200 201 202 203 204 205 206 207 208
T *Tensor::mutable_data(const Place &place) {
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the datatype, and data layout of tensor may be in "
         "an illegal state.";
209
  if (is_dense_tensor()) {
210
    return static_cast<phi::DenseTensor *>(impl_.get())->mutable_data<T>(place);
211 212
  }
  return nullptr;
213 214
}

215 216 217 218 219 220 221 222
template PADDLE_API float *Tensor::mutable_data<float>(const Place &place);
template PADDLE_API double *Tensor::mutable_data<double>(const Place &place);
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(const Place &place);
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(const Place &place);
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(const Place &place);
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(const Place &place);
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(const Place &place);
template PADDLE_API bool *Tensor::mutable_data<bool>(const Place &place);
223
template PADDLE_API phi::dtype::complex<float>
224
    *Tensor::mutable_data<phi::dtype::complex<float>>(const Place &place);
225
template PADDLE_API phi::dtype::complex<double>
226
    *Tensor::mutable_data<phi::dtype::complex<double>>(const Place &place);
227
template PADDLE_API phi::dtype::float16 *
228
Tensor::mutable_data<phi::dtype::float16>(const Place &place);
229 230 231

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
232
  if (is_dense_tensor()) {
233 234 235
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())->value().data<T>();
236 237 238 239
  }
  return nullptr;
}

240 241 242 243 244 245 246 247
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
248 249 250 251 252 253 254 255
template PADDLE_API const phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>() const;
template PADDLE_API const phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>() const;
template PADDLE_API const phi::dtype::float16 *
Tensor::data<phi::dtype::float16>() const;
template PADDLE_API const phi::dtype::bfloat16 *
Tensor::data<phi::dtype::bfloat16>() const;
256 257 258

template <typename T>
T *Tensor::data() {
259
  if (is_dense_tensor()) {
260 261 262
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())
263 264 265
        ->mutable_value()
        ->data<T>();
  }
266 267 268
  return nullptr;
}

269 270 271 272 273 274 275 276
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
277 278 279 280 281
template PADDLE_API phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *Tensor::data<phi::dtype::float16>();
282

283
// TODO(chenweihang): replace slice impl by API
284
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
285
  if (is_dense_tensor()) {
286 287
    return Tensor(std::make_shared<phi::DenseTensor>(
        std::move(phi::DenseTensorUtils::Slice(
288
            *(static_cast<phi::DenseTensor *>(impl_.get())),
289 290 291
            begin_idx,
            end_idx))));
  } else {
292
    PADDLE_THROW(phi::errors::Unimplemented(
293
        "Only support slice operation on DenseTensor now."));
294
  }
295 296
}

297
const std::shared_ptr<phi::TensorBase> &Tensor::impl() const { return impl_; }
298

299
void Tensor::set_impl(const std::shared_ptr<phi::TensorBase> &impl) {
300 301 302
  impl_ = impl;
}

303 304 305 306
void Tensor::set_impl(std::shared_ptr<phi::TensorBase> &&impl) {
  impl_ = std::move(impl);
}

307 308
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
309 310 311 312
  int device_id = phi::backends::gpu::GetCurrentDeviceId();
  auto* gpu_context = DeviceContextPool::Instance()
    .Get<AllocationType::GPU>(GPUPlace(device_id));
  return gpu_context->stream();
313 314 315
}
#endif

316
/* Part 5: Status utils methods */
317 318 319

bool Tensor::defined() const { return impl_ != nullptr; }

320
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
321 322

bool Tensor::is_initialized() const {
323 324 325 326
  LOG_FIRST_N(WARNING, 1)
      << "The `is_initialized` method is deprecated since version "
         "2.3, and will be removed in version 2.4! "
         "Please use `initialized` method instead.";
327
  return defined() && impl_->initialized();
328 329
}

330 331 332 333 334
void Tensor::reset() {
  impl_.reset();
  autograd_meta_.reset();
  name_ = "";
}
335

336
/* Part 6: Operator overloading */
337 338 339 340

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
341
  name_ = x.name_;
342 343 344 345 346 347
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
348
  name_ = std::move(x.name_);
349 350 351 352 353 354 355
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

356 357 358 359 360
const std::shared_ptr<AbstractAutogradMeta> &Tensor::mutable_autograd_meta()
    const {
  return autograd_meta_;
}

361 362 363 364 365
void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

366 367 368
void Tensor::bump_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
369
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
370 371 372 373 374 375 376 377 378 379
    inplace_version_counter.Bump();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "bump_inplace_version is only supported on DenseTensor now."));
  }
}

uint32_t Tensor::current_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
380
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
381 382 383 384 385 386 387 388
    return inplace_version_counter.CurrentVersion();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "current_inplace_version is only supported on DenseTensor now."));
  }
  return 0;
}

389 390 391 392
void Tensor::reset_inplace_version(bool set_to_zero) {
  if (set_to_zero) {
    if (is_dense_tensor()) {
      auto &inplace_version_counter =
393
          static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
394 395 396 397 398
      inplace_version_counter.SetInplaceVersionToZero();
    }
  }
}

399 400
}  // namespace experimental
}  // namespace paddle