test_bpr_loss_op.py 1.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18 19
import numpy as np
from op_test import OpTest, randomize_probability

20 21
import paddle

22 23

class TestBprLossOp1(OpTest):
24
    """Test BprLoss with discrete one-hot labels."""
25 26 27

    def setUp(self):
        self.op_type = "bpr_loss"
28
        batch_size = 40
29 30
        class_num = 5
        X = randomize_probability(batch_size, class_num, dtype='float64')
31
        label = np.random.randint(0, class_num, (batch_size, 1), dtype="int64")
32 33 34 35
        bpr_loss_result = []
        for i in range(batch_size):
            sum = 0.0
            for j in range(class_num):
36
                if j == label[i][0]:
37
                    continue
38
                sum += -np.log(1.0 + np.exp(X[i][j] - X[i][label[i][0]]))
39 40
            bpr_loss_result.append(-sum / (class_num - 1))
        bpr_loss = np.asmatrix([[x] for x in bpr_loss_result], dtype="float64")
41
        self.inputs = {"X": X, "Label": label}
42 43 44
        self.outputs = {"Y": bpr_loss}

    def test_check_output(self):
姜永久 已提交
45
        paddle.enable_static()
46
        self.check_output()
姜永久 已提交
47
        paddle.disable_static()
48 49 50 51 52 53

    def test_check_grad(self):
        self.check_grad(["X"], "Y", numeric_grad_delta=0.001)


if __name__ == "__main__":
54
    paddle.enable_static()
55
    unittest.main()