adamw_kernel.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/adamw_kernel.h"

#include <vector>

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"

namespace phi {

template <typename T, typename Context>
void AdamwDenseKernel(const Context& dev_ctx,
                      const DenseTensor& param,
                      const DenseTensor& grad,
                      const DenseTensor& learning_rate,
                      const DenseTensor& moment1,
                      const DenseTensor& moment2,
                      const DenseTensor& beta1_pow,
                      const DenseTensor& beta2_pow,
                      const paddle::optional<DenseTensor>& master_param,
                      const paddle::optional<DenseTensor>& skip_update,
                      const Scalar& beta1,
                      const Scalar& beta2,
                      const Scalar& epsilon,
                      float lr_ratio,
                      float coeff,
                      bool with_decay,
                      bool lazy_mode,
                      int64_t min_row_size_to_use_multithread,
                      bool multi_precision,
                      bool use_global_beta_pow,
                      DenseTensor* param_out,
                      DenseTensor* moment1_out,
                      DenseTensor* moment2_out,
                      DenseTensor* beta1_pow_out,
                      DenseTensor* beta2_pow_out,
                      DenseTensor* master_param_outs) {
53
  using XPUType = typename XPUTypeTrait<T>::Type;
54 55 56 57 58 59 60 61
  bool skip_update_ = false;
  if (skip_update.is_initialized()) {
    PADDLE_ENFORCE_EQ(
        skip_update->numel(),
        1,
        errors::InvalidArgument("Input(SkipUpdate) size must be 1, but get %d",
                                skip_update->numel()));
    std::vector<bool> skip_update_vec;
62
    phi::TensorToVector(*skip_update, dev_ctx, &skip_update_vec);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    skip_update_ = skip_update_vec[0];
  }
  if (skip_update_) {
    VLOG(4) << "Adamw skip update";
    phi::Copy(dev_ctx, param, dev_ctx.GetPlace(), false, param_out);
    phi::Copy(dev_ctx, moment1, dev_ctx.GetPlace(), false, moment1_out);
    phi::Copy(dev_ctx, moment2, dev_ctx.GetPlace(), false, moment2_out);
    phi::Copy(dev_ctx, beta1_pow, beta1_pow.place(), false, beta1_pow_out);
    phi::Copy(dev_ctx, beta2_pow, beta2_pow.place(), false, beta2_pow_out);
    return;
  }

  auto beta1_ = beta1.to<float>();
  auto beta2_ = beta2.to<float>();
  auto epsilon_ = epsilon.to<float>();

  const float* beta1_pow_ptr = beta1_pow.template data<float>();
  const float* beta2_pow_ptr = beta2_pow.template data<float>();
  DenseTensor xpu_beta1_pow;
  DenseTensor xpu_beta2_pow;
  if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) {
    phi::Copy(dev_ctx, beta1_pow, dev_ctx.GetPlace(), false, &xpu_beta1_pow);
    phi::Copy(dev_ctx, beta2_pow, dev_ctx.GetPlace(), false, &xpu_beta2_pow);
    dev_ctx.Wait();
    beta1_pow_ptr = xpu_beta1_pow.template data<float>();
    beta2_pow_ptr = xpu_beta2_pow.template data<float>();
  }
90 91
  if (!with_decay) {
    coeff = static_cast<float>(0.0);
92
  }
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
  float* new_lr = RAII_GUARD.alloc_l3_or_gm<float>(learning_rate.numel());
  PADDLE_ENFORCE_XDNN_NOT_NULL(new_lr);
  int r = 0;
  r = xpu::scale(dev_ctx.x_context(),
                 learning_rate.template data<float>(),
                 new_lr,
                 learning_rate.numel(),
                 false,
                 lr_ratio,
                 0.0f);
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");

  r = xpu::adamw(
      dev_ctx.x_context(),
      reinterpret_cast<const XPUType*>(grad.template data<T>()),
      moment1.template data<float>(),
      moment2.template data<float>(),
      reinterpret_cast<const XPUType*>(param.template data<T>()),
      beta1_pow_ptr,
      beta2_pow_ptr,
      new_lr,
      dev_ctx.template Alloc<float>(moment1_out),
      dev_ctx.template Alloc<float>(moment2_out),
      reinterpret_cast<XPUType*>(dev_ctx.template Alloc<T>(param_out)),
      beta1_,
      beta2_,
      epsilon_,
      coeff,
      param.numel());
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "adamw");
124 125

  if (!use_global_beta_pow) {
126
    // update in cpu
127 128 129 130 131 132 133 134
    if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) {
      const float* beta1_pow_p = beta1_pow.template data<float>();
      dev_ctx.template HostAlloc<float>(beta1_pow_out)[0] =
          beta1_ * beta1_pow_p[0];
      const float* beta2_pow_p = beta2_pow.template data<float>();
      dev_ctx.template HostAlloc<float>(beta2_pow_out)[0] =
          beta2_ * beta2_pow_p[0];
      xpu_wait(dev_ctx.x_context()->xpu_stream);
135
    } else {  // update in  xpu
136 137 138 139 140 141 142 143 144
      float* beta1_pow_out_p = dev_ctx.template Alloc<float>(beta1_pow_out);
      float* beta2_pow_out_p = dev_ctx.template Alloc<float>(beta2_pow_out);
      int r = xpu::scale(dev_ctx.x_context(),
                         beta1_pow_ptr,
                         beta1_pow_out_p,
                         beta1_pow.numel(),
                         false,
                         beta1_,
                         0.0f);
145
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
146 147 148 149 150 151 152
      r = xpu::scale(dev_ctx.x_context(),
                     beta2_pow_ptr,
                     beta2_pow_out_p,
                     beta2_pow.numel(),
                     false,
                     beta2_,
                     0.0f);
153
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
154 155 156 157 158 159
    }
  }
}

}  // namespace phi

160 161
PD_REGISTER_KERNEL(
    adamw, XPU, ALL_LAYOUT, phi::AdamwDenseKernel, float, phi::dtype::float16) {
162 163 164 165 166
  // Skip beta1_pow, beta2_pow, skip_update data transform
  kernel->InputAt(5).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(6).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(8).SetBackend(phi::Backend::ALL_BACKEND);
}