adamw_kernel.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/adamw_kernel.h"

#include <vector>

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
// for TensorToVector
#include "paddle/fluid/framework/tensor_util.h"

namespace phi {

template <typename T, typename Context>
void AdamwDenseKernel(const Context& dev_ctx,
                      const DenseTensor& param,
                      const DenseTensor& grad,
                      const DenseTensor& learning_rate,
                      const DenseTensor& moment1,
                      const DenseTensor& moment2,
                      const DenseTensor& beta1_pow,
                      const DenseTensor& beta2_pow,
                      const paddle::optional<DenseTensor>& master_param,
                      const paddle::optional<DenseTensor>& skip_update,
                      const Scalar& beta1,
                      const Scalar& beta2,
                      const Scalar& epsilon,
                      float lr_ratio,
                      float coeff,
                      bool with_decay,
                      bool lazy_mode,
                      int64_t min_row_size_to_use_multithread,
                      bool multi_precision,
                      bool use_global_beta_pow,
                      DenseTensor* param_out,
                      DenseTensor* moment1_out,
                      DenseTensor* moment2_out,
                      DenseTensor* beta1_pow_out,
                      DenseTensor* beta2_pow_out,
                      DenseTensor* master_param_outs) {
55
  using XPUType = typename XPUTypeTrait<T>::Type;
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  bool skip_update_ = false;
  if (skip_update.is_initialized()) {
    PADDLE_ENFORCE_EQ(
        skip_update->numel(),
        1,
        errors::InvalidArgument("Input(SkipUpdate) size must be 1, but get %d",
                                skip_update->numel()));
    std::vector<bool> skip_update_vec;
    paddle::framework::TensorToVector(*skip_update, dev_ctx, &skip_update_vec);
    skip_update_ = skip_update_vec[0];
  }
  if (skip_update_) {
    VLOG(4) << "Adamw skip update";
    phi::Copy(dev_ctx, param, dev_ctx.GetPlace(), false, param_out);
    phi::Copy(dev_ctx, moment1, dev_ctx.GetPlace(), false, moment1_out);
    phi::Copy(dev_ctx, moment2, dev_ctx.GetPlace(), false, moment2_out);
    phi::Copy(dev_ctx, beta1_pow, beta1_pow.place(), false, beta1_pow_out);
    phi::Copy(dev_ctx, beta2_pow, beta2_pow.place(), false, beta2_pow_out);
    return;
  }

  auto beta1_ = beta1.to<float>();
  auto beta2_ = beta2.to<float>();
  auto epsilon_ = epsilon.to<float>();

  const float* beta1_pow_ptr = beta1_pow.template data<float>();
  const float* beta2_pow_ptr = beta2_pow.template data<float>();
  DenseTensor xpu_beta1_pow;
  DenseTensor xpu_beta2_pow;
  if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) {
    phi::Copy(dev_ctx, beta1_pow, dev_ctx.GetPlace(), false, &xpu_beta1_pow);
    phi::Copy(dev_ctx, beta2_pow, dev_ctx.GetPlace(), false, &xpu_beta2_pow);
    dev_ctx.Wait();
    beta1_pow_ptr = xpu_beta1_pow.template data<float>();
    beta2_pow_ptr = xpu_beta2_pow.template data<float>();
  }
  if (with_decay) {
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    int r = xpu::adamw(
        dev_ctx.x_context(),
        reinterpret_cast<const XPUType*>(grad.template data<T>()),
        moment1.template data<float>(),
        moment2.template data<float>(),
        reinterpret_cast<const XPUType*>(param.template data<T>()),
        beta1_pow_ptr,
        beta2_pow_ptr,
        learning_rate.template data<float>(),
        dev_ctx.template Alloc<float>(moment1_out),
        dev_ctx.template Alloc<float>(moment2_out),
        reinterpret_cast<XPUType*>(dev_ctx.template Alloc<T>(param_out)),
        beta1_,
        beta2_,
        epsilon_,
        coeff,
        param.numel());
110 111
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "adamw");
  } else {
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    int r = xpu::adam(
        dev_ctx.x_context(),
        reinterpret_cast<const XPUType*>(grad.template data<T>()),
        moment1.template data<float>(),
        moment2.template data<float>(),
        reinterpret_cast<const XPUType*>(param.template data<T>()),
        beta1_pow_ptr,
        beta2_pow_ptr,
        learning_rate.template data<float>(),
        dev_ctx.template Alloc<float>(moment1_out),
        dev_ctx.template Alloc<float>(moment2_out),
        reinterpret_cast<XPUType*>(dev_ctx.template Alloc<T>(param_out)),
        beta1_,
        beta2_,
        epsilon_,
        param.numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "adam");
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  }

  if (!use_global_beta_pow) {
    // update in cpu and then copy to xpu
    if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) {
      const float* beta1_pow_p = beta1_pow.template data<float>();
      dev_ctx.template HostAlloc<float>(beta1_pow_out)[0] =
          beta1_ * beta1_pow_p[0];
      const float* beta2_pow_p = beta2_pow.template data<float>();
      dev_ctx.template HostAlloc<float>(beta2_pow_out)[0] =
          beta2_ * beta2_pow_p[0];
      xpu_wait(dev_ctx.x_context()->xpu_stream);
    } else {
      float* beta1_pow_out_p = dev_ctx.template Alloc<float>(beta1_pow_out);
      float* beta2_pow_out_p = dev_ctx.template Alloc<float>(beta2_pow_out);
      int r = xpu::scale(dev_ctx.x_context(),
                         beta1_pow_ptr,
                         beta1_pow_out_p,
                         beta1_pow.numel(),
                         false,
                         beta1_,
                         0.0f);
151
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
152 153 154 155 156 157 158
      r = xpu::scale(dev_ctx.x_context(),
                     beta2_pow_ptr,
                     beta2_pow_out_p,
                     beta2_pow.numel(),
                     false,
                     beta2_,
                     0.0f);
159
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
160 161 162 163 164 165
    }
  }
}

}  // namespace phi

166 167
PD_REGISTER_KERNEL(
    adamw, XPU, ALL_LAYOUT, phi::AdamwDenseKernel, float, phi::dtype::float16) {
168 169 170 171 172
  // Skip beta1_pow, beta2_pow, skip_update data transform
  kernel->InputAt(5).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(6).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(8).SetBackend(phi::Backend::ALL_BACKEND);
}