engine.cc 9.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31
void TensorRTEngine::Build(const DescType &paddle_model) {
Y
Yan Chunwei 已提交
32 33 34
  PADDLE_ENFORCE(false, "not implemented");
}

35 36
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
37
  freshDeviceId();
38
  const std::thread::id tid = std::this_thread::get_id();
N
nhzlx 已提交
39
  batch_size_ = batch_size;
40 41 42 43 44 45 46
  if (infer_context_.find(tid) == infer_context_.end()) {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        "You should build engine first and then set the context.");
    infer_context_[tid].reset(infer_engine_->createExecutionContext());
  }
  infer_context_[tid]->enqueue(batch_size, buffers->data(), stream, nullptr);
47
  cudaStreamSynchronize(stream);
N
nhzlx 已提交
48 49 50
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
51
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
52
  freshDeviceId();
53
  VLOG(3) << "TRT to freeze network";
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
#if IS_TRT_VERSION_GE(5000)
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode. ";
    }
  }
#else
  if (enable_fp16)
    LOG(INFO) << "Using FP16 in Paddle-trt must ensure that the version of TRT "
                 "is at least 5."
                 " So, use FP32 to run.";
#endif
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
82
    infer_builder_->setInt8Mode(true);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
      for (int i = 0; i < infer_network_->getNbLayers(); i++) {
        auto layer = infer_network_->getLayer(i);
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
      for (int i = 0; i < infer_network_->getNbInputs(); i++) {
        all_t.insert(infer_network_->getInput(i));
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
          LOG(WARNING)
              << "We are in trt int8 mode(not calibration), scale not setted"
              << " for tensor " << t->getName()
              << ", this might be ok when trt does not need this range";
        }
      }
#endif
    }
N
nhzlx 已提交
117
  }
Y
Yan Chunwei 已提交
118 119 120 121 122

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");
}

123
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
124
                                                nvinfer1::DataType dtype,
125
                                                const nvinfer1::Dims &dims) {
Y
Yan Chunwei 已提交
126 127 128 129
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
130
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
131
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
Y
Yan Chunwei 已提交
132
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
133
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
134
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
135
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
136 137 138
  return input;
}

139 140
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
Y
Yan Chunwei 已提交
141 142 143
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

144
  auto *output = layer->getOutput(offset);
145
  SetITensor(name, output);
Y
Yan Chunwei 已提交
146 147
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
148
  PADDLE_ENFORCE(!output->isNetworkInput());
Y
Yan Chunwei 已提交
149
  infer_network_->markOutput(*output);
150
  PADDLE_ENFORCE(output->isNetworkOutput());
Y
Yan Chunwei 已提交
151 152 153 154 155
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

N
nhzlx 已提交
156 157 158 159
bool TensorRTEngine::HasDeclared(const std::string &name) {
  return buffer_sizes_.count(name) > 0;
}

160
void TensorRTEngine::DeclareOutput(const std::string &name) {
L
Luo Tao 已提交
161 162 163
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

164
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
165 166
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
167
  PADDLE_ENFORCE(!output->isNetworkInput());
L
Luo Tao 已提交
168 169 170 171 172 173
  infer_network_->markOutput(*output);
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

174 175
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
176
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
177
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
178 179 180 181
                    name);
  itensor_map_[name] = tensor;
}

182
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
183
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
184 185 186
  return itensor_map_[name];
}

187 188 189 190
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
  auto w_dims = weight_tensor->dims();
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE(!weight_map.count(name),
                 "During TRT Op converter: We set weight %s with the same name "
                 "twice into the weight_map",
                 name);
  weight_map[name].reset(new framework::Tensor());
  weight_map[name]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name].get());
  float *weight_data = weight_map[name]->mutable_data<float>(cpu_place);

  if (enable_int8) {
    // when the op is fc, scale's size should be 1
    // when the op is conv, the scale's size should be w_dims[0]
    bool valid_scale_size =
        (scale.size() == 1 || scale.size() == static_cast<size_t>(w_dims[0]));
    PADDLE_ENFORCE(valid_scale_size, "TRT int8 quant: invalid scale size");
    for (int i = 0; i < weight_tensor->numel(); i++) {
      bool is_valid_int8 =
          ((weight_data[i] >= -128) && (weight_data[i] <= 127));
      PADDLE_ENFORCE(is_valid_int8,
                     "We are in anakin subgraph int8 mode, the weight of conv "
                     "should be in range [-128, 127]");
      if (scale.size() == 1) {
        weight_data[i] *= (scale[0] / 127);
      } else {
        PADDLE_ENFORCE(w_dims.size() == 4,
                       "TRT int8 quant : We only use the channel quant for "
                       "conv op, so the weight dims should be 4.");
        int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
        weight_data[i] *= (scale[i / inner_size] / 127);
      }
    }
  }
  return weight_data;
}

232 233
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
234
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
235 236
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
237
  owned_plugin_.emplace_back(plugin);
238
  return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
239 240
}

N
nhzlx 已提交
241 242 243 244 245 246 247
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
248 249 250
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle