collective.py 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging
meteor135's avatar
meteor135 已提交
15
import os
16

meteor135's avatar
meteor135 已提交
17
import paddle
18
import paddle.distributed.transpiler.distribute_transpiler as dist_transpiler
19
from paddle import fluid
20
from paddle.distributed.fleet.meta_optimizers import RawProgramOptimizer
21
from paddle.fluid import io
22
from paddle.fluid.compiler import CompiledProgram
meteor135's avatar
meteor135 已提交
23
from paddle.fluid.executor import Executor
24
from paddle.fluid.framework import Program
25 26
from paddle.fluid.incubate.checkpoint.checkpoint_saver import (
    CheckpointSaver,
meteor135's avatar
meteor135 已提交
27 28 29 30 31 32
    PaddleModel,
)
from paddle.incubate.distributed.fleet.base import (
    DistributedOptimizer,
    Fleet,
    Mode,
33
)
34 35


36 37
class Collective(Fleet):
    def __init__(self):
38
        super().__init__(Mode.COLLECTIVE)
T
tangwei12 已提交
39
        self._local_ip = 0
40

41 42
        self.startup_program = None
        self._origin_program = None
43
        self._transpiled_program = None
44
        self.main_program = None
G
gongweibao 已提交
45
        self._checkpoint_prefix = "__paddle_fleet_checkpoint__"
46
        self._param_file_name = "_paddle_fleet_param__"
47

T
tangwei12 已提交
48
    def init_worker(self):
49
        logging.warn(
50 51
            "You should not call 'init_worker' method for collective mode."
        )
52

T
tangwei12 已提交
53
    def run_worker(self, main_programs=None, scopes=None):
54
        logging.warn(
55 56
            "You should not call 'run_worker' method for collective mode."
        )
57

T
tangwei12 已提交
58
    def init_server(self, model_dir=None):
59
        logging.warn(
60 61
            "You should not call 'init_server' method for collective mode."
        )
62

T
tangwei12 已提交
63
    def run_server(self):
64
        logging.warn(
65 66
            "You should not call 'run_server' method for collective mode."
        )
67 68 69

    def stop_worker(self):
        logging.warn(
70 71
            "You should not call 'stop_worker' method for collective mode."
        )
72 73

    def distributed_optimizer(self, optimizer, strategy=None):
74
        self._optimizer = CollectiveOptimizer(optimizer, strategy)
T
tangwei12 已提交
75
        return self._optimizer
76

77 78 79 80 81 82 83 84
    def save_inference_model(
        self,
        executor,
        dirname,
        feeded_var_names=None,
        target_vars=None,
        main_program=None,
        export_for_deployment=True,
85
        legacy_format=False,
86
    ):
87 88 89 90 91
        """
        Prune the given `main_program` to build a new program especially for
        inference, and then save it and all related parameters to given
        `dirname` by the `executor`.
        """
92 93
        assert isinstance(executor, Executor), (
            "In fleet.save_inference_model() function, executor must be as"
94
            " Executor type."
95
        )
96 97 98

        if main_program is None:
            main_program = self._origin_program
99 100
        assert isinstance(main_program, Program), (
            "In fleet.save_inference_model() function, main_program "
101
            "must be as Program type."
102 103 104 105 106 107 108 109 110 111 112
        )

        io.save_inference_model(
            dirname,
            feeded_var_names,
            target_vars,
            executor,
            main_program,
            None,
            None,
            export_for_deployment,
113
            legacy_format=legacy_format,
114 115 116 117 118
        )

    def save_persistables(
        self, executor, dirname, main_program=None, filename=None
    ):
119 120 121 122 123 124 125 126 127 128
        """
        This function filters out all variables with `persistable==True` from
        the give `main_program` and then saves these variables to the folder
        `dirname` or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """
129 130
        assert isinstance(executor, Executor), (
            "In fleet.save_inference_model() function, executor must be as"
131
            " Executor type."
132
        )
133 134 135 136

        if main_program is None:
            main_program = self._origin_program

137 138
        assert isinstance(main_program, Program), (
            "In fleet.save_inference_model() function, main_program "
139
            "must be as Program type."
140
        )
141

142 143 144
        paddle.distributed.io.save_persistables(
            executor, dirname, main_program, filename=filename
        )
145

146 147 148 149 150 151 152 153 154 155 156
    def save_checkpoint(
        self,
        executor,
        path,
        trainer_id,
        train_status,
        fs,
        main_program=None,
        local_cache_path=".cache",
        remain_all_checkpoint=True,
    ):
157 158 159
        """
        This function save persistables and current epoch num to path.
        """
160
        if main_program is None:
161 162
            main_program = self._transpiled_program

163 164 165 166 167 168 169
        m = PaddleModel(executor, main_program)
        t = train_status
        c = CheckpointSaver(fs)
        real_path, checkpoint_no = c.save_checkpoint(
            path=path,
            slists=[m, t],
            trainer_id=trainer_id,
170 171
            local_cache_path=local_cache_path,
        )
172 173

        if not remain_all_checkpoint:
174 175 176
            c.clean_redundant_checkpoints(path)

        return real_path, checkpoint_no
G
gongweibao 已提交
177

178 179 180 181 182 183 184 185 186 187 188
    def load_checkpoint(
        self,
        executor,
        path,
        trainer_id,
        train_status,
        fs,
        main_program=None,
        local_cache_path=".cache",
        ignore_empty=True,
    ):
189 190 191 192
        """
        This function load persistables and current epoch num from path.
        """

193
        if main_program is None:
194 195
            main_program = self._transpiled_program

196 197
        m = PaddleModel(executor, main_program)
        c = CheckpointSaver(fs)
198 199 200 201 202 203 204
        return c.load_checkpoint(
            path,
            [m, train_status],
            trainer_id=trainer_id,
            ignore_empty=ignore_empty,
            local_cache_path=local_cache_path,
        )
205

206 207 208 209

fleet = Collective()


210 211 212 213 214 215
class DistributedStrategy(fluid.BuildStrategy):
    """
    Init function of DistributedStrategy
    """

    def __init__(self):
216
        super().__init__()
217 218 219 220 221 222
        self.use_local_sgd = False
        self.use_dist_fc = False

        self.dist_fc_config = None  # DistFCConfig
        self.mode = "nccl2"  # or collective
        self.collective_mode = None  # local_sgd or grad_allreduce
G
gongweibao 已提交
223
        self.nccl_comm_num = 1
M
mapingshuo 已提交
224
        self.forward_recompute = False  # use RecomputeOptimizer
M
mapingshuo 已提交
225
        self.recompute_checkpoints = []
M
mapingshuo 已提交
226 227
        self.use_amp = False  # use mixed precision optimizer
        self.amp_loss_scaling = 2**15
228 229 230

        self.exec_strategy = fluid.ExecutionStrategy()

231 232 233
        # configurations below are used for unit test
        self._ut4grad_allreduce = False

234

235 236
class CollectiveOpBasedOptimizer(DistributedOptimizer):
    """
237 238
    Collective Operator Base Class For Distributed Optimizer
    The class is invisible to a user
239 240 241
    """

    def __init__(self, optimizer, strategy=None):
242
        assert isinstance(
243 244
            strategy, DistributedStrategy
        ), "strategy must be DistributedStrategy"
245
        super().__init__(optimizer, strategy)
246

247 248 249 250 251 252 253 254 255 256 257
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
        return self._optimizer.backward(
            loss, startup_program, parameter_list, no_grad_set, callbacks
        )
258 259 260 261 262

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)


263 264 265 266 267 268 269 270 271 272 273
class CollectiveOptimizer(DistributedOptimizer):
    """
    DistributedOptimizer is a wrapper for paddle.fluid.optimizer
    A user should pass a paddle.fluid.optimizer to DistributedOptimizer
    minimize() function is implemented.
    DistributedOptimizer is the starting point for a user who wants to
    run distributed training. The optimized information will be stored in
    Fleet() instance who holds the global information about current distributed
    training.
    """

274
    def __init__(self, optimizer, strategy=DistributedStrategy()):
275 276
        if strategy is None:
            strategy = DistributedStrategy()
277
        super().__init__(optimizer, strategy)
M
mapingshuo 已提交
278
        self._forward_recompute = strategy.forward_recompute
279 280 281 282
        if not isinstance(strategy.recompute_checkpoints, list):
            raise ValueError(
                "DistStrategy.recompute_checkpoints should" "be a List"
            )
M
mapingshuo 已提交
283 284 285
        self._recompute_checkpoints = strategy.recompute_checkpoints
        self._use_amp = strategy.use_amp
        self._amp_loss_scaling = strategy.amp_loss_scaling
286
        self.print_config = False
287

288 289 290 291 292 293 294 295 296 297 298
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
        return self._optimizer.backward(
            loss, startup_program, parameter_list, no_grad_set, callbacks
        )
299 300 301 302

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)

303
    def _check_condition(self, name, **kwargs):
304
        for k, v in kwargs.items():
305
            if v is True:
306
                raise AssertionError(f"you can't use {name} and {k} together")
307 308 309

    def _check_collective_mode(self, main_program, optimizer, strategy):
        """
T
tianshuo78520a 已提交
310
        Check the conflict conditions.
311 312
        """
        if strategy.use_local_sgd:
313 314
            strategy.mode = "collective"
            strategy.collective_mode = "local_sgd"
315 316 317 318 319 320
            self._check_condition(
                "use_local_sgd",
                use_dgc=main_program._enable_dgc,
                use_dist_fc=strategy.use_dist_fc,
                use_lamb=main_program._use_lamb,
            )
321 322

        if strategy.use_dist_fc:
323 324 325 326 327 328 329 330 331
            self._check_condition(
                "use_dist_fc",
                use_dgc=main_program._enable_dgc,
                use_local_sgd=strategy.use_local_sgd,
                use_lamb=main_program._use_lamb,
            )
            assert (
                strategy.dist_fc_config is not None
            ), "DistributedStrategy.dist_fc_config should be set"
332

333 334 335
        if strategy._ut4grad_allreduce:
            strategy.mode = "collective"
            strategy.collective_mode = "grad_allreduce"
336 337 338 339 340
            self._check_condition(
                "_ut4grad_allreduce",
                use_dgc=main_program._enable_dgc,
                use_lamb=main_program._use_lamb,
            )
341

342 343 344 345 346 347 348
        if (
            self._strategy.collective_mode == "local_sgd"
            or self._strategy.collective_mode == "grad_allreduce"
        ):
            assert (
                self._strategy.mode == "collective"
            ), "local_sgd and grad_allreduce can be used under collective mode"
349 350 351 352 353 354 355 356 357 358 359 360

    def _transpile(self, startup_program, main_program):
        """
        Transpile the programs to distributed programs. And add the variables.
        """
        worker_endpoints = fleet.worker_endpoints()
        trainer_id = fleet.worker_index()
        current_endpoint = fleet.worker_endpoints()[trainer_id]
        worker_endpoints_env = ','.join(worker_endpoints)
        trainers_num = fleet.worker_num()

        if self.print_config:
361 362 363 364 365 366
            print(
                "worker_endpoints:{} trainers_num:{} current_endpoint:{} \
                  trainer_id:{}".format(
                    worker_endpoints, trainers_num, current_endpoint, trainer_id
                )
            )
367 368 369 370 371 372 373

        # call transpiler
        config = dist_transpiler.DistributeTranspilerConfig()
        config.mode = self._strategy.mode
        config.collective_mode = self._strategy.collective_mode

        config.nccl_comm_num = self._strategy.nccl_comm_num
374 375 376 377 378 379
        config.use_hierarchical_allreduce = (
            self._strategy.use_hierarchical_allreduce
        )
        config.hierarchical_allreduce_inter_nranks = (
            self._strategy.hierarchical_allreduce_inter_nranks
        )
380 381

        t = dist_transpiler.DistributeTranspiler(config=config)
382 383 384 385 386 387 388
        t.transpile(
            trainer_id=trainer_id,
            trainers=worker_endpoints_env,
            startup_program=startup_program,
            program=main_program,
            current_endpoint=current_endpoint,
        )
389

G
gongweibao 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    def _get_node_ips_from_endpoints(self, endpoints):
        ss = set()
        ips = []
        for ep in endpoints:
            ip = ep.split(":")[0].strip()
            if ip not in ss:
                ss.add(ip)
                ips.append(ip)
            else:
                continue

        return ips

    def _node_num(self):
        worker_endpoints = fleet.worker_endpoints()
        current_endpoint = fleet.worker_endpoints()[fleet.worker_index()]
        worker_endpoints_env = ','.join(worker_endpoints)

        node_ips = self._get_node_ips_from_endpoints(worker_endpoints)
        node_ip = current_endpoint.split(":")[0].strip()

        node_num = len(node_ips)

        return node_num

415
    def _try_to_compile(self, startup_program, main_program):
G
gongweibao 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        node_num = self._node_num()
        assert node_num >= 1, "nccl2 node_num must >= 1, now:{}" % node_num

        exec_strategy = self._strategy.exec_strategy

        if node_num <= 1:
            if self._strategy.nccl_comm_num > 1:
                logging.warn("set nccl_comm_num=1 since you only have 1 node.")
            self._strategy.nccl_comm_num = 1

            if self._strategy.use_hierarchical_allreduce:
                logging.warn(
                    "set use_hierarchical_allreduce=False since you only have 1 node."
                )
            self._strategy.use_hierarchical_allreduce = False

        sync_allreduce = os.getenv("FLAGS_sync_nccl_allreduce")
        if sync_allreduce is None or sync_allreduce == "1":
            exec_strategy.num_threads = self._strategy.nccl_comm_num + 1
            if self._strategy.use_hierarchical_allreduce:
                exec_strategy.num_threads = 2 * self._strategy.nccl_comm_num + 1
            if exec_strategy.num_threads > 4:
                logging.warn(
                    "if you use use_hierarchical_allreduce or "
                    "with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0"
                )

443 444 445 446 447 448 449 450 451 452 453
        # NOTE. open sync_batch_norm will hang when use multi num_threads
        sync_batch_norm = self._strategy.sync_batch_norm
        if sync_batch_norm is not None and sync_batch_norm is True:
            self._strategy.nccl_comm_num = 1
            self._strategy.use_hierarchical_allreduce = False
            exec_strategy.num_threads = 1
            logging.warn(
                "use sync_batch_norm will hang when set num_threads > 1, so "
                "set num_threads=1, nccl_comm_num=1, use_hierarchical_allreduce=False."
            )

G
gongweibao 已提交
454
        if self.print_config:
455 456 457 458 459 460 461 462 463 464 465 466
            print(
                "node_num:",
                node_num,
                "num_threads:",
                exec_strategy.num_threads,
                "use_hierarchical_allreduce:",
                self._strategy.use_hierarchical_allreduce,
                "nccl_comm_num:",
                self._strategy.nccl_comm_num,
                "FLAGS_sync_nccl_allreduce:",
                sync_allreduce,
            )
G
gongweibao 已提交
467

468 469 470 471 472 473 474 475 476 477
        self._transpile(startup_program, main_program)

        if self._strategy.mode == "collective":
            return main_program

        self._strategy.num_trainers = fleet.worker_num()
        self._strategy.trainer_id = fleet.worker_index()
        self._strategy.trainers_endpoints = fleet.worker_endpoints()
        self._strategy.enable_backward_optimizer_op_deps = True

478 479 480 481 482 483 484 485 486 487 488 489 490
        comm_opt = RawProgramOptimizer(self._optimizer)
        comm_opt.fuse_all_reduce_ops = True
        comm_opt.fuse_grad_size_in_num = True
        comm_opt.endpoints = self._strategy.trainers_endpoints
        comm_opt.current_endpoint = comm_opt.endpoints[fleet.worker_index()]
        comm_opt.rank = fleet.worker_index()
        comm_opt.nranks = fleet.worker_num()
        comm_opt.main_program = main_program
        if comm_opt.nranks > 1:
            comm_opt._transpile_main_program(self._loss)

        self._compiled_program = CompiledProgram(
            comm_opt.main_program, build_strategy=self._strategy
491
        )
492 493 494

        return self._compiled_program

M
mapingshuo 已提交
495
    def raiseOptimizeError(self, strategy_name, optimize_name):
496
        raise ValueError(
497 498
            f"can not use {optimize_name} when you set DistStrategy.{strategy_name} "
            "as True"
499 500 501 502 503
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
504 505 506 507 508 509 510 511 512 513 514 515
        """
        minimize a program through loss
        Args:
            loss (Variable|Variable List): loss variable or loss variable list to run optimization.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
        Note that in parameter server mode, a worker will not get anything about optimize_os
T
tianshuo78520a 已提交
516
        Because optimizer algorithms run on pserver side. We will make this usable in pserver
517 518 519
        process, but currently the optimization part is written into Fleet(). A user does not
        need to care about how to startup a pserver node.
        """
M
mapingshuo 已提交
520 521 522 523

        # check optimizer conflicts
        if self._forward_recompute:
            if self._recompute_checkpoints == []:
524 525 526 527
                raise ValueError(
                    "please set strategy.recompute_checkpoints"
                    "when set strategy.forward_recompute as True"
                )
M
mapingshuo 已提交
528
            if self._optimizer.__class__.__name__ in [
529 530
                "RecomputeOptimizer",
                "OptimizerWithMixedPrecision",
M
mapingshuo 已提交
531
            ]:
532 533 534
                self.raiseOptimizeError(
                    "forward_recompute", self._optimizer.__class__.__name__
                )
M
mapingshuo 已提交
535

536 537 538
            self._optimizer = fluid.optimizer.RecomputeOptimizer(
                self._optimizer
            )
M
mapingshuo 已提交
539 540 541 542
            self._optimizer._set_checkpoints(self._recompute_checkpoints)

        if self._use_amp:
            if self._optimizer.__class__.__name__ in [
543 544
                "OptimizerWithMixedPrecision",
                "DGCMomentumOptimizer",
M
mapingshuo 已提交
545
            ]:
546 547 548
                self.raiseOptimizeError(
                    "mixed_precision", self._optimizer.__class__.__name__
                )
549
            self._optimizer = paddle.static.amp.decorate(
M
mapingshuo 已提交
550 551
                self._optimizer,
                init_loss_scaling=self._amp_loss_scaling,
552 553
                use_dynamic_loss_scaling=True,
            )
M
mapingshuo 已提交
554

555 556 557 558
        main_program = loss.block.program
        if startup_program is None:
            startup_program = fluid.default_startup_program()
        fleet.startup_program = startup_program
559

560
        self._loss = loss
561

562 563 564
        self._check_collective_mode(
            main_program, self._optimizer, self._strategy
        )
565

566
        optimize_ops, param_grads = self._optimizer.minimize(
567 568
            loss, startup_program, parameter_list, no_grad_set=no_grad_set
        )
569

570 571
        fleet._origin_program = main_program.clone(for_test=False)
        fleet._transpiled_program = main_program
572
        fleet.main_program = self._try_to_compile(startup_program, main_program)
573 574

        return optimize_ops, param_grads