collective.py 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging
meteor135's avatar
meteor135 已提交
15
import os
16

meteor135's avatar
meteor135 已提交
17
import paddle
18
import paddle.distributed.transpiler.distribute_transpiler as dist_transpiler
19 20
import paddle.fluid as fluid
import paddle.fluid.io as io
21
from paddle.fluid.compiler import CompiledProgram
meteor135's avatar
meteor135 已提交
22
from paddle.fluid.executor import Executor
23
from paddle.fluid.framework import Program
24 25
from paddle.fluid.incubate.checkpoint.checkpoint_saver import (
    CheckpointSaver,
meteor135's avatar
meteor135 已提交
26 27 28 29 30 31
    PaddleModel,
)
from paddle.incubate.distributed.fleet.base import (
    DistributedOptimizer,
    Fleet,
    Mode,
32
)
33 34


35 36
class Collective(Fleet):
    def __init__(self):
37
        super().__init__(Mode.COLLECTIVE)
T
tangwei12 已提交
38
        self._local_ip = 0
39

40 41
        self.startup_program = None
        self._origin_program = None
42
        self._transpiled_program = None
43
        self.main_program = None
G
gongweibao 已提交
44
        self._checkpoint_prefix = "__paddle_fleet_checkpoint__"
45
        self._param_file_name = "_paddle_fleet_param__"
46

T
tangwei12 已提交
47
    def init_worker(self):
48
        logging.warn(
49 50
            "You should not call 'init_worker' method for collective mode."
        )
51

T
tangwei12 已提交
52
    def run_worker(self, main_programs=None, scopes=None):
53
        logging.warn(
54 55
            "You should not call 'run_worker' method for collective mode."
        )
56

T
tangwei12 已提交
57
    def init_server(self, model_dir=None):
58
        logging.warn(
59 60
            "You should not call 'init_server' method for collective mode."
        )
61

T
tangwei12 已提交
62
    def run_server(self):
63
        logging.warn(
64 65
            "You should not call 'run_server' method for collective mode."
        )
66 67 68

    def stop_worker(self):
        logging.warn(
69 70
            "You should not call 'stop_worker' method for collective mode."
        )
71 72

    def distributed_optimizer(self, optimizer, strategy=None):
73
        self._optimizer = CollectiveOptimizer(optimizer, strategy)
T
tangwei12 已提交
74
        return self._optimizer
75

76 77 78 79 80 81 82 83 84
    def save_inference_model(
        self,
        executor,
        dirname,
        feeded_var_names=None,
        target_vars=None,
        main_program=None,
        export_for_deployment=True,
    ):
85 86 87 88 89
        """
        Prune the given `main_program` to build a new program especially for
        inference, and then save it and all related parameters to given
        `dirname` by the `executor`.
        """
90 91
        assert isinstance(executor, Executor), (
            "In fleet.save_inference_model() function, executor must be as"
92
            " Executor type."
93
        )
94 95 96

        if main_program is None:
            main_program = self._origin_program
97 98
        assert isinstance(main_program, Program), (
            "In fleet.save_inference_model() function, main_program "
99
            "must be as Program type."
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        )

        io.save_inference_model(
            dirname,
            feeded_var_names,
            target_vars,
            executor,
            main_program,
            None,
            None,
            export_for_deployment,
        )

    def save_persistables(
        self, executor, dirname, main_program=None, filename=None
    ):
116 117 118 119 120 121 122 123 124 125
        """
        This function filters out all variables with `persistable==True` from
        the give `main_program` and then saves these variables to the folder
        `dirname` or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """
126 127
        assert isinstance(executor, Executor), (
            "In fleet.save_inference_model() function, executor must be as"
128
            " Executor type."
129
        )
130 131 132 133

        if main_program is None:
            main_program = self._origin_program

134 135
        assert isinstance(main_program, Program), (
            "In fleet.save_inference_model() function, main_program "
136
            "must be as Program type."
137
        )
138

139 140 141
        paddle.distributed.io.save_persistables(
            executor, dirname, main_program, filename=filename
        )
142

143 144 145 146 147 148 149 150 151 152 153
    def save_checkpoint(
        self,
        executor,
        path,
        trainer_id,
        train_status,
        fs,
        main_program=None,
        local_cache_path=".cache",
        remain_all_checkpoint=True,
    ):
154 155 156
        """
        This function save persistables and current epoch num to path.
        """
157
        if main_program is None:
158 159
            main_program = self._transpiled_program

160 161 162 163 164 165 166
        m = PaddleModel(executor, main_program)
        t = train_status
        c = CheckpointSaver(fs)
        real_path, checkpoint_no = c.save_checkpoint(
            path=path,
            slists=[m, t],
            trainer_id=trainer_id,
167 168
            local_cache_path=local_cache_path,
        )
169 170

        if not remain_all_checkpoint:
171 172 173
            c.clean_redundant_checkpoints(path)

        return real_path, checkpoint_no
G
gongweibao 已提交
174

175 176 177 178 179 180 181 182 183 184 185
    def load_checkpoint(
        self,
        executor,
        path,
        trainer_id,
        train_status,
        fs,
        main_program=None,
        local_cache_path=".cache",
        ignore_empty=True,
    ):
186 187 188 189
        """
        This function load persistables and current epoch num from path.
        """

190
        if main_program is None:
191 192
            main_program = self._transpiled_program

193 194
        m = PaddleModel(executor, main_program)
        c = CheckpointSaver(fs)
195 196 197 198 199 200 201
        return c.load_checkpoint(
            path,
            [m, train_status],
            trainer_id=trainer_id,
            ignore_empty=ignore_empty,
            local_cache_path=local_cache_path,
        )
202

203 204 205 206

fleet = Collective()


207 208 209 210 211 212
class DistributedStrategy(fluid.BuildStrategy):
    """
    Init function of DistributedStrategy
    """

    def __init__(self):
213
        super().__init__()
214 215 216 217 218 219
        self.use_local_sgd = False
        self.use_dist_fc = False

        self.dist_fc_config = None  # DistFCConfig
        self.mode = "nccl2"  # or collective
        self.collective_mode = None  # local_sgd or grad_allreduce
G
gongweibao 已提交
220
        self.nccl_comm_num = 1
M
mapingshuo 已提交
221
        self.forward_recompute = False  # use RecomputeOptimizer
M
mapingshuo 已提交
222
        self.recompute_checkpoints = []
M
mapingshuo 已提交
223 224
        self.use_amp = False  # use mixed precision optimizer
        self.amp_loss_scaling = 2**15
225 226 227

        self.exec_strategy = fluid.ExecutionStrategy()

228 229 230
        # configurations below are used for unit test
        self._ut4grad_allreduce = False

231

232 233
class CollectiveOpBasedOptimizer(DistributedOptimizer):
    """
234 235
    Collective Operator Base Class For Distributed Optimizer
    The class is invisible to a user
236 237 238
    """

    def __init__(self, optimizer, strategy=None):
239
        assert isinstance(
240 241
            strategy, DistributedStrategy
        ), "strategy must be DistributedStrategy"
242
        super().__init__(optimizer, strategy)
243

244 245 246 247 248 249 250 251 252 253 254
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
        return self._optimizer.backward(
            loss, startup_program, parameter_list, no_grad_set, callbacks
        )
255 256 257 258 259

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)


260 261 262 263 264 265 266 267 268 269 270
class CollectiveOptimizer(DistributedOptimizer):
    """
    DistributedOptimizer is a wrapper for paddle.fluid.optimizer
    A user should pass a paddle.fluid.optimizer to DistributedOptimizer
    minimize() function is implemented.
    DistributedOptimizer is the starting point for a user who wants to
    run distributed training. The optimized information will be stored in
    Fleet() instance who holds the global information about current distributed
    training.
    """

271
    def __init__(self, optimizer, strategy=DistributedStrategy()):
272 273
        if strategy is None:
            strategy = DistributedStrategy()
274
        super().__init__(optimizer, strategy)
M
mapingshuo 已提交
275
        self._forward_recompute = strategy.forward_recompute
276 277 278 279
        if not isinstance(strategy.recompute_checkpoints, list):
            raise ValueError(
                "DistStrategy.recompute_checkpoints should" "be a List"
            )
M
mapingshuo 已提交
280 281 282
        self._recompute_checkpoints = strategy.recompute_checkpoints
        self._use_amp = strategy.use_amp
        self._amp_loss_scaling = strategy.amp_loss_scaling
283
        self.print_config = False
284

285 286 287 288 289 290 291 292 293 294 295
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
        return self._optimizer.backward(
            loss, startup_program, parameter_list, no_grad_set, callbacks
        )
296 297 298 299

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)

300
    def _check_condition(self, name, **kwargs):
301
        for k, v in kwargs.items():
302 303 304 305 306
            if v is True:
                assert False, "you can't use %s and %s together" % (name, k)

    def _check_collective_mode(self, main_program, optimizer, strategy):
        """
T
tianshuo78520a 已提交
307
        Check the conflict conditions.
308 309
        """
        if strategy.use_local_sgd:
310 311
            strategy.mode = "collective"
            strategy.collective_mode = "local_sgd"
312 313 314 315 316 317
            self._check_condition(
                "use_local_sgd",
                use_dgc=main_program._enable_dgc,
                use_dist_fc=strategy.use_dist_fc,
                use_lamb=main_program._use_lamb,
            )
318 319

        if strategy.use_dist_fc:
320 321 322 323 324 325 326 327 328
            self._check_condition(
                "use_dist_fc",
                use_dgc=main_program._enable_dgc,
                use_local_sgd=strategy.use_local_sgd,
                use_lamb=main_program._use_lamb,
            )
            assert (
                strategy.dist_fc_config is not None
            ), "DistributedStrategy.dist_fc_config should be set"
329

330 331 332
        if strategy._ut4grad_allreduce:
            strategy.mode = "collective"
            strategy.collective_mode = "grad_allreduce"
333 334 335 336 337
            self._check_condition(
                "_ut4grad_allreduce",
                use_dgc=main_program._enable_dgc,
                use_lamb=main_program._use_lamb,
            )
338

339 340 341 342 343 344 345
        if (
            self._strategy.collective_mode == "local_sgd"
            or self._strategy.collective_mode == "grad_allreduce"
        ):
            assert (
                self._strategy.mode == "collective"
            ), "local_sgd and grad_allreduce can be used under collective mode"
346 347 348 349 350 351 352 353 354 355 356 357

    def _transpile(self, startup_program, main_program):
        """
        Transpile the programs to distributed programs. And add the variables.
        """
        worker_endpoints = fleet.worker_endpoints()
        trainer_id = fleet.worker_index()
        current_endpoint = fleet.worker_endpoints()[trainer_id]
        worker_endpoints_env = ','.join(worker_endpoints)
        trainers_num = fleet.worker_num()

        if self.print_config:
358 359 360 361 362 363
            print(
                "worker_endpoints:{} trainers_num:{} current_endpoint:{} \
                  trainer_id:{}".format(
                    worker_endpoints, trainers_num, current_endpoint, trainer_id
                )
            )
364 365 366 367 368 369 370

        # call transpiler
        config = dist_transpiler.DistributeTranspilerConfig()
        config.mode = self._strategy.mode
        config.collective_mode = self._strategy.collective_mode

        config.nccl_comm_num = self._strategy.nccl_comm_num
371 372 373 374 375 376
        config.use_hierarchical_allreduce = (
            self._strategy.use_hierarchical_allreduce
        )
        config.hierarchical_allreduce_inter_nranks = (
            self._strategy.hierarchical_allreduce_inter_nranks
        )
377 378

        t = dist_transpiler.DistributeTranspiler(config=config)
379 380 381 382 383 384 385
        t.transpile(
            trainer_id=trainer_id,
            trainers=worker_endpoints_env,
            startup_program=startup_program,
            program=main_program,
            current_endpoint=current_endpoint,
        )
386

G
gongweibao 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    def _get_node_ips_from_endpoints(self, endpoints):
        ss = set()
        ips = []
        for ep in endpoints:
            ip = ep.split(":")[0].strip()
            if ip not in ss:
                ss.add(ip)
                ips.append(ip)
            else:
                continue

        return ips

    def _node_num(self):
        worker_endpoints = fleet.worker_endpoints()
        current_endpoint = fleet.worker_endpoints()[fleet.worker_index()]
        worker_endpoints_env = ','.join(worker_endpoints)

        node_ips = self._get_node_ips_from_endpoints(worker_endpoints)
        node_ip = current_endpoint.split(":")[0].strip()

        node_num = len(node_ips)

        return node_num

412
    def _try_to_compile(self, startup_program, main_program):
G
gongweibao 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        node_num = self._node_num()
        assert node_num >= 1, "nccl2 node_num must >= 1, now:{}" % node_num

        exec_strategy = self._strategy.exec_strategy

        if node_num <= 1:
            if self._strategy.nccl_comm_num > 1:
                logging.warn("set nccl_comm_num=1 since you only have 1 node.")
            self._strategy.nccl_comm_num = 1

            if self._strategy.use_hierarchical_allreduce:
                logging.warn(
                    "set use_hierarchical_allreduce=False since you only have 1 node."
                )
            self._strategy.use_hierarchical_allreduce = False

        sync_allreduce = os.getenv("FLAGS_sync_nccl_allreduce")
        if sync_allreduce is None or sync_allreduce == "1":
            exec_strategy.num_threads = self._strategy.nccl_comm_num + 1
            if self._strategy.use_hierarchical_allreduce:
                exec_strategy.num_threads = 2 * self._strategy.nccl_comm_num + 1
            if exec_strategy.num_threads > 4:
                logging.warn(
                    "if you use use_hierarchical_allreduce or "
                    "with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0"
                )

440 441 442 443 444 445 446 447 448 449 450
        # NOTE. open sync_batch_norm will hang when use multi num_threads
        sync_batch_norm = self._strategy.sync_batch_norm
        if sync_batch_norm is not None and sync_batch_norm is True:
            self._strategy.nccl_comm_num = 1
            self._strategy.use_hierarchical_allreduce = False
            exec_strategy.num_threads = 1
            logging.warn(
                "use sync_batch_norm will hang when set num_threads > 1, so "
                "set num_threads=1, nccl_comm_num=1, use_hierarchical_allreduce=False."
            )

G
gongweibao 已提交
451
        if self.print_config:
452 453 454 455 456 457 458 459 460 461 462 463
            print(
                "node_num:",
                node_num,
                "num_threads:",
                exec_strategy.num_threads,
                "use_hierarchical_allreduce:",
                self._strategy.use_hierarchical_allreduce,
                "nccl_comm_num:",
                self._strategy.nccl_comm_num,
                "FLAGS_sync_nccl_allreduce:",
                sync_allreduce,
            )
G
gongweibao 已提交
464

465 466 467 468 469 470 471 472 473 474
        self._transpile(startup_program, main_program)

        if self._strategy.mode == "collective":
            return main_program

        self._strategy.num_trainers = fleet.worker_num()
        self._strategy.trainer_id = fleet.worker_index()
        self._strategy.trainers_endpoints = fleet.worker_endpoints()
        self._strategy.enable_backward_optimizer_op_deps = True

meteor135's avatar
meteor135 已提交
475
        self._compiled_program = CompiledProgram(main_program)
476 477 478 479 480

        self._compiled_program.with_data_parallel(
            loss_name=self._loss.name,
            build_strategy=self._strategy,
            exec_strategy=self._strategy.exec_strategy,
481 482
            share_vars_from=None,
        )
483 484 485

        return self._compiled_program

M
mapingshuo 已提交
486
    def raiseOptimizeError(self, strategy_name, optimize_name):
487 488 489 490 491 492 493 494
        raise ValueError(
            "can not use {0} when you set DistStrategy.{1} "
            "as True".format(optimize_name, strategy_name)
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
495 496 497 498 499 500 501 502 503 504 505 506
        """
        minimize a program through loss
        Args:
            loss (Variable|Variable List): loss variable or loss variable list to run optimization.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
        Note that in parameter server mode, a worker will not get anything about optimize_os
T
tianshuo78520a 已提交
507
        Because optimizer algorithms run on pserver side. We will make this usable in pserver
508 509 510
        process, but currently the optimization part is written into Fleet(). A user does not
        need to care about how to startup a pserver node.
        """
M
mapingshuo 已提交
511 512 513 514

        # check optimizer conflicts
        if self._forward_recompute:
            if self._recompute_checkpoints == []:
515 516 517 518
                raise ValueError(
                    "please set strategy.recompute_checkpoints"
                    "when set strategy.forward_recompute as True"
                )
M
mapingshuo 已提交
519
            if self._optimizer.__class__.__name__ in [
520 521
                "RecomputeOptimizer",
                "OptimizerWithMixedPrecision",
M
mapingshuo 已提交
522
            ]:
523 524 525
                self.raiseOptimizeError(
                    "forward_recompute", self._optimizer.__class__.__name__
                )
M
mapingshuo 已提交
526

527 528 529
            self._optimizer = fluid.optimizer.RecomputeOptimizer(
                self._optimizer
            )
M
mapingshuo 已提交
530 531 532 533
            self._optimizer._set_checkpoints(self._recompute_checkpoints)

        if self._use_amp:
            if self._optimizer.__class__.__name__ in [
534 535
                "OptimizerWithMixedPrecision",
                "DGCMomentumOptimizer",
M
mapingshuo 已提交
536
            ]:
537 538 539
                self.raiseOptimizeError(
                    "mixed_precision", self._optimizer.__class__.__name__
                )
540
            self._optimizer = paddle.static.amp.decorate(
M
mapingshuo 已提交
541 542
                self._optimizer,
                init_loss_scaling=self._amp_loss_scaling,
543 544
                use_dynamic_loss_scaling=True,
            )
M
mapingshuo 已提交
545

546 547 548 549
        main_program = loss.block.program
        if startup_program is None:
            startup_program = fluid.default_startup_program()
        fleet.startup_program = startup_program
550

551
        self._loss = loss
552

553 554 555
        self._check_collective_mode(
            main_program, self._optimizer, self._strategy
        )
556

557
        optimize_ops, param_grads = self._optimizer.minimize(
558 559
            loss, startup_program, parameter_list, no_grad_set=no_grad_set
        )
560

561 562
        fleet._origin_program = main_program.clone(for_test=False)
        fleet._transpiled_program = main_program
563
        fleet.main_program = self._try_to_compile(startup_program, main_program)
564 565

        return optimize_ops, param_grads