eager.cc 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

17
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
18 19 20
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25 26
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
27 28 29
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
30
#include "pybind11/detail/internals.h"
31 32
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
33
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
34
#include "paddle/fluid/framework/python_headers.h"
35
#include "paddle/fluid/pybind/eager_op_function_impl.h"
36
#include "paddle/fluid/pybind/tensor_py.h"
37 38
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
39 40 41 42 43
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

44
PyTypeObject* p_tensor_type;
45
extern PyTypeObject* g_vartype_pytype;
46
extern PyTypeObject* g_framework_tensor_pytype;
47

48
PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
49 50
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
51 52
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
53
    Py_INCREF(obj);
54 55 56 57
  }
  return obj;
}

58
// TODO(jiabin): Overload this once we need more constructor in Python
59 60 61 62 63 64 65 66
void EmptyTensorInitializer(TensorObject* self, const std::string& name,
                            const paddle::platform::Place& place,
                            bool persistable = false, bool stop_gradient = true,
                            framework::proto::VarType::Type dtype =
                                paddle::framework::proto::VarType::FP32,
                            const std::vector<int>& dims = {},
                            framework::proto::VarType::Type var_type =
                                paddle::framework::proto::VarType::LOD_TENSOR) {
67
  auto ddims = phi::make_ddim(dims);
68
  PADDLE_ENFORCE_GE(
69
      phi::product(ddims), 0,
70 71 72 73
      paddle::platform::errors::InvalidArgument(
          "Create Eager Tensor with dims contain minus num is ilegal"
          "Please check your code and make sure you new a "
          "eager tensor with fixed shape instead of using -1."));
74 75
  self->tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor));
76 77 78 79
  autograd_meta->SetPersistable(persistable);
  autograd_meta->SetStopGradient(stop_gradient);
  if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) {
    // TODO(jiabin): Maybe support LOD later
80 81 82 83 84
    std::shared_ptr<phi::DenseTensor> dense_tensor =
        std::make_shared<phi::DenseTensor>(
            phi::make_intrusive<paddle::experimental::SharedStorage>(place),
            phi::DenseTensorMeta(paddle::framework::TransToPtenDataType(dtype),
                                 ddims));
85
    dense_tensor->mutable_data(place);
86
    self->tensor.set_impl(dense_tensor);
87 88 89 90 91 92 93 94 95 96 97
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We only support LoDTensor to be constructed by this initializer, "
        "please check your var type first and make sure you are going to "
        "construct LoDTensor."));
  }

  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
98 99 100
  }
}

101 102
void InitTensorWithNumpyValue(TensorObject* self, const py::object& array,
                              bool zero_copy = false) {
103
  PADDLE_ENFORCE_EQ(
104
      self->tensor.defined(), true,
105
      paddle::platform::errors::Fatal(
106 107
          "Calling InitTensorWithNumpyValue of Eager Tensor without "
          "EmptyTensorInitializer is "
108 109
          "forbidden. Please check your code and make sure you new a "
          "eager tensor before init it with NumPy."));
110 111
  phi::DenseTensor* impl_ptr =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
112 113
  paddle::platform::Place place = impl_ptr->place();
  if (platform::is_cpu_place(place)) {
114
    SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
115
  } else if (platform::is_xpu_place(place)) {
116
    SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
117
  } else if (platform::is_gpu_place(place)) {
118
    SetTensorFromPyArray<platform::CUDAPlace>(impl_ptr, array, place,
119
                                              zero_copy);
120
  } else if (platform::is_cuda_pinned_place(place)) {
121
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(impl_ptr, array, place,
122
                                                    zero_copy);
123
  } else if (platform::is_npu_place(place)) {
124
    SetTensorFromPyArray<platform::NPUPlace>(impl_ptr, array, place, zero_copy);
125 126 127 128 129 130 131
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of "
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace"));
  }
}

132 133 134 135
void InitTensorWithTensor(TensorObject* self,
                          const paddle::experimental::Tensor& src,
                          const paddle::platform::Place& place,
                          const std::string& name) {
136 137
  self->tensor.set_name(name);
  if (place == src.inner_place()) {
138
    auto impl = std::static_pointer_cast<phi::DenseTensor>(src.impl());
139
    self->tensor.set_impl(impl);
140 141
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
142
    self->tensor.set_impl(
143
        src.copy_to(phi::TransToPtenBackend(place), true).impl());
144 145
    VLOG(4) << "Different place, do TensorCopy";
  }
146
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetStopGradient(true);
147
  if (src.get_autograd_meta()) {
148
    egr::EagerUtils::unsafe_autograd_meta(self->tensor)
149 150 151
        ->SetPersistable(
            egr::EagerUtils::unsafe_autograd_meta(src)->Persistable());
  } else {
152
    egr::EagerUtils::unsafe_autograd_meta(self->tensor)->SetPersistable(false);
153 154 155
  }
}

156 157 158 159
void InitTensorWithFrameworkTensor(TensorObject* self,
                                   const framework::Tensor& src,
                                   const paddle::platform::Place& place,
                                   const std::string& name) {
160
  self->tensor.set_name(name);
161
  if (place == src.place()) {
162
    self->tensor.set_impl(std::make_shared<phi::DenseTensor>(src));
163 164
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
165
    auto temp =
166
        paddle::experimental::Tensor(std::make_shared<phi::DenseTensor>(src));
167
    self->tensor.set_impl(
168
        temp.copy_to(phi::TransToPtenBackend(place), true).impl());
169 170
    VLOG(4) << "Different place, do TensorCopy";
  }
171 172
  egr::EagerUtils::autograd_meta(&(self->tensor))->SetStopGradient(true);
  egr::EagerUtils::unsafe_autograd_meta(self->tensor)->SetPersistable(false);
173
}
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

py::object ParsePyArray(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  py::object numpy_value = py::object();

  if (kw_order_map["value"] <= args_num) {
    numpy_value = py::object(
        py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true);
  } else {
    if (flag_kwargs && kws_map["value"] != NULL) {
      numpy_value = py::object(py::handle(kws_map["value"]), true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The first expected arguments is {value: PyArray}, "
          "but could not parse the first argument {value: PyArray} "
          "successfully. "
          "Please check your input first and make sure you are on the right "
          "way."));
    }
  }
  return numpy_value;
}

paddle::platform::Place ParsePlace(
    std::unordered_map<std::string, PyObject*> kws_map,
    std::unordered_map<std::string, Py_ssize_t> kw_order_map, PyObject* args,
    bool flag_kwargs, Py_ssize_t args_num) {
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();

  if (kw_order_map["place"] <= args_num) {
    place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1),
                            kw_order_map["place"] - 1);
  } else {
    if (flag_kwargs && kws_map["place"] != NULL) {
      place = CastPyArg2Place(kws_map["place"], 0);
    } else {
      // default
      return place;
    }
  }
  return place;
}

// boolean arguments: zero_copy, stop_gradient, persistable
bool ParseBooleanArgs(std::string key,
                      std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                      PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  bool res = false;
  if (key == "stop_gradient") res = true;

  if (kw_order_map[key] <= args_num) {
    res = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, kw_order_map[key] - 1),
                                kw_order_map[key] - 1);
  } else {
    if (flag_kwargs && kws_map[key] != NULL) {
      res = CastPyArg2AttrBoolean(kws_map[key], 0);
    } else {
      return res;
    }
  }
  return res;
}

std::string ParseName(std::unordered_map<std::string, PyObject*> kws_map,
                      std::unordered_map<std::string, Py_ssize_t> kw_order_map,
                      PyObject* args, bool flag_kwargs, Py_ssize_t args_num) {
  std::string act_name = "";
  if (kw_order_map["name"] <= args_num) {
    PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1);
    if (name_obj == Py_None) {
      act_name =
          egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    } else {
      act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1);
    }
  } else {
    if (flag_kwargs) {
      if (kws_map["name"] == NULL) {
        act_name =
            egr::Controller::Instance().GenerateUniqueName("generated_tensor");
      } else {
        act_name = CastPyArg2AttrString(kws_map["name"], 0);
      }
    } else {
      act_name =
          egr::Controller::Instance().GenerateUniqueName("generated_tensor");
    }
  }
  return act_name;
}

269
// initialize Tensor by PyArray(first argument is PyArray,
270
// mix args and kwargs) automatically.
271 272 273 274 275 276
void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr,
                             std::unordered_map<std::string, PyObject*> kws_map,
                             PyObject* args, bool flag_kwargs,
                             Py_ssize_t args_num) {
  // The first argument of the Tensor constructor is PyArray,
  // there are 6 arguments to construct the new Tensor,
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1},     {"place", 2}, {"persistable", 3},
      {"zero_copy", 4}, {"name", 5},  {"stop_gradient", 6}};

  py::object numpy_value = py::object();
  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  bool persistable = false;
  bool zero_copy = false;
  std::string act_name = "";
  bool stop_gradient = true;

  numpy_value =
      ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num);
  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  persistable = ParseBooleanArgs("persistable", kws_map, kw_order_map, args,
                                 flag_kwargs, args_num);
  zero_copy = ParseBooleanArgs("zero_copy", kws_map, kw_order_map, args,
                               flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);
  stop_gradient = ParseBooleanArgs("stop_gradient", kws_map, kw_order_map, args,
                                   flag_kwargs, args_num);

304 305 306
  EmptyTensorInitializer(py_tensor_ptr, act_name, place, persistable,
                         stop_gradient);
  InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, zero_copy);
307 308
}

309
// initialize Tensor by Tensor or framework::Tensor (mix args and
310
// kwargs) automatically.
311 312 313 314 315 316
void AutoInitTensorByTensor(TensorObject* py_tensor_ptr,
                            std::unordered_map<std::string, PyObject*> kws_map,
                            PyObject* args, bool flag_kwargs,
                            Py_ssize_t args_num,
                            bool init_by_egr_tensor = true) {
  // The first argument of the Tensor constructor is Tensor or
317
  // framework Tensor,
318
  // there are 3 arguments to construct the new Tensor,
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  // kw_order_map's key is every arguments of the constructor,
  // kw_order_map's value is the position of the arguments respectively.
  // If u want to update this constructor with new arguments,
  // need to update this map and to add or change related code.
  std::unordered_map<std::string, Py_ssize_t> kw_order_map{
      {"value", 1}, {"place", 2}, {"name", 3}};

  paddle::platform::Place place =
      egr::Controller::Instance().GetExpectedPlace();
  std::string act_name = "";

  place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num);
  act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num);

  if (init_by_egr_tensor) {
334
    paddle::experimental::Tensor src_tensor;
335
    if (kw_order_map["value"] <= args_num) {
336 337 338
      src_tensor =
          CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
                           kw_order_map["value"] - 1);
339 340
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
341
        src_tensor = CastPyArg2Tensor(kws_map["value"], 0);
342 343
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
344 345
            "The first expected kwargs is {value: Tensor}, "
            "but could not parse the first argument {value: Tensor} "
346 347 348 349 350
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
351
    InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  } else {
    // init by framework tensor
    framework::Tensor src_tensor;
    if (kw_order_map["value"] <= args_num) {
      src_tensor = CastPyArg2FrameworkTensor(
          PyTuple_GET_ITEM(args, kw_order_map["value"] - 1),
          kw_order_map["value"] - 1);
    } else {
      if (flag_kwargs && kws_map["value"] != NULL) {
        src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The first expected arguments is {value: framework::Tensor}, "
            "but could not parse the first argument {value: framework::Tensor} "
            "successfully. "
            "Please check your input first and make sure you are on the right "
            "way."));
      }
    }
371
    InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name);
372 373 374 375
  }
}

/** We should have init function with signature:
376 377 378 379 380 381 382
   * 1.
   * def __init__ ()
   * 2.
   * def __init__ (
   * ** dtype: paddle::framework::proto::VarType::Type,
   * ** dims: vector<int>,
   * ** name: std::string,
383
   * ** type: paddle::framework::proto::VarType::LodTensor,
384
   * ** persistable: bool)
385 386 387
   * 3. (multi-place)
   * (should have at least one parameter, one parameter equals to case 4, zero
   * parameter equals to case 1)
388 389 390 391 392 393 394 395 396 397 398 399
   * def __init__ (
   * ** value: ndarray,
   * ** place: paddle::platform::Place,
   * ** persistable: bool,
   * ** zero_copy: bool,
   * ** name: std::string,
   * ** stop_gradient: bool)
   * 4.
   * def __init__ (
   * ** value: ndarray)
   * 5.
   * def __init__ (
400
   * ** tensor: Tensor)
401 402 403
   * 6. (multi-place)
   * (should have at least one parameter, one parameter equals to case 5, zero
   * parameter equals to case 1.)
404
   * def __init__ (
405
   * ** tensor: Tensor,
406 407
   * ** place: paddle::platform::Place,
   * ** name: std::string)
408 409
   * 7. (multi-place) (should have at least one parameter, one parameter similar
   * to case 5, zero parameter equals to case 1.)
410 411 412 413
   * def __init__ (
   * ** tensor: FrameworkTensor,
   * ** place: paddle::platform::Place,
   * ** name: std::string)
414
   *  **/
415
int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) {
416 417 418 419 420 421 422 423 424
  // set a flag to record use kwargs or not
  bool flag_kwargs = false;
  if (kwargs) flag_kwargs = true;

  // all kwargs
  PyObject* kw_zero_copy = NULL;
  PyObject* kw_persistable = NULL;
  PyObject* kw_stop_gradient = NULL;

425
  PyObject* kw_value = NULL;  // receive PyArray or Tensor
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  PyObject* kw_place = NULL;
  PyObject* kw_name = NULL;
  PyObject* kw_dims = NULL;
  PyObject* kw_dtype = NULL;
  PyObject* kw_type = NULL;

  // the keywords argument
  static char* kwlist[] = {
      const_cast<char*>("value"),       const_cast<char*>("place"),
      const_cast<char*>("persistable"), const_cast<char*>("zero_copy"),
      const_cast<char*>("name"),        const_cast<char*>("stop_gradient"),
      const_cast<char*>("dims"),        const_cast<char*>("dtype"),
      const_cast<char*>("type"),        NULL};

  // 'O' Store a Python object (without any conversion) in a C object pointer,
  // '|' Indicates that the remaining arguments in the Python argument list are
  // optional.
  // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that
  // takes both positional and keyword parameters into local variables,
  // which enhance case2, case3, case4, case5, case6, case7.
  bool flag_ = PyArg_ParseTupleAndKeywords(
      args, kwargs, "|OOOOOOOOO", kwlist, &kw_value, &kw_place, &kw_persistable,
      &kw_zero_copy, &kw_name, &kw_stop_gradient, &kw_dims, &kw_dtype,
      &kw_type);

  // helper map
  std::unordered_map<std::string, PyObject*> kws_map{
      {"value", kw_value},
      {"place", kw_place},
      {"persistable", kw_persistable},
      {"zero_copy", kw_zero_copy},
      {"name", kw_name},
      {"stop_gradient", kw_stop_gradient},
      {"dims", kw_dims},
      {"dtype", kw_dtype},
      {"type", kw_type}};

  PADDLE_ENFORCE_EQ(flag_, true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Could not parse args and kwargs successfully, "
                        "please check your input first and make"
                        "sure you are on the right way. "
                        "The expected arguments as follow: ("
                        "value, place, persistable, zero_copy, "
                        "name, stop_gradient, dims, dtype, type)"));

472 473 474 475 476 477
  PADDLE_ENFORCE_NOT_NULL(
      self, paddle::platform::errors::Fatal(
                "Calling __init__ of Eager Tensor without __new__ is "
                "forbidden. Please check your code and make sure you new a "
                "eager tensor before init it."));

478
  auto py_tensor_ptr = reinterpret_cast<TensorObject*>(self);
479 480

  Py_ssize_t args_num = PyTuple_Size(args);
481 482 483 484 485
  VLOG(6) << " args_num: " << args_num;

  // args_num = 0, means that there is no position arguments.
  if (args_num == (Py_ssize_t)0) {
    if (!flag_kwargs) {
486 487
      // case 1
      VLOG(6) << "Calling case1's initializer.";
488
      EmptyTensorInitializer(
489 490 491 492
          py_tensor_ptr,
          egr::Controller::Instance().GenerateUniqueName("generated_tensor"),
          egr::Controller::Instance().GetExpectedPlace());
      return 0;
493 494 495 496
    } else {  // no position args, all arguments are kwargs
      if (kw_value != NULL) {
        if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) {
          VLOG(6) << "Calling case3's or case4's initializer";
497 498
          AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                  args_num);
499
          return 0;
500 501
        } else if (PyObject_IsInstance(
                       kw_value, reinterpret_cast<PyObject*>(p_tensor_type))) {
502
          VLOG(6) << "Calling case5's or case6's initializer";
503 504
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num);
505 506 507 508 509
          return 0;
        } else if (PyObject_IsInstance(kw_value,
                                       reinterpret_cast<PyObject*>(
                                           g_framework_tensor_pytype))) {
          VLOG(6) << "Calling case7's initializer.";
510 511 512
          AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                                 args_num,
                                 /* false means not init by egr tensor*/ false);
513
          return 0;
514
        } else {
515 516 517
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Could not parse the first keyword argument successfully, "
              "the first keyword argument is value, but it should be PyArray "
518
              "or Tensor or framework::Tensor. "
519 520
              "Please check your input first and make sure you are on the "
              "right way."));
521
        }
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
      } else if (kw_dtype != NULL &&
                 PyObject_IsInstance(
                     kw_dtype, reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer";

        PADDLE_ENFORCE_NOT_NULL(
            kw_dims,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dims is "
                "forbidden. Please check your code and make sure you new a "
                "dims before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_name,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL name is "
                "forbidden. Please check your code and make sure you new a "
                "name before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_dtype,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL dtype is "
                "forbidden. Please check your code and make sure you new a "
                "dtype before calling this constructor."));

        PADDLE_ENFORCE_NOT_NULL(
            kw_persistable,
            paddle::platform::errors::InvalidArgument(
                "Calling __init__ of Eager Tensor with NULL persistable is "
                "forbidden. Please check your code and make sure you new a "
                "persistable before calling this constructor."));

        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(kw_dtype, 0);
        std::vector<int> dims = CastPyArg2VectorOfInt(kw_dims, 0);

559
        std::string act_name = "";
560
        if (kw_name == Py_None) {
561 562 563
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
564
          act_name = CastPyArg2AttrString(kw_name, 0);
565
        }
566 567 568 569 570

        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(kw_type, 0);
        bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0);

571 572 573 574
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable,
                               /* stop_gradient */ true, dtype, dims, var_type);
575

576
        return 0;
577 578
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
579 580
            "We not only support construct Tensor from numpy value "
            "or tensor(Tensor or framework::Tensor) "
581
            "with python kwargs by this initializer, "
582
            "but also even support dtype to init a empty Tensor. "
583 584
            "Please check your input first and make sure you call the existed "
            "constructor."));
585
      }
586 587 588 589 590 591 592
    }
  } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 ||
             args_num == (Py_ssize_t)3) {
    // 1 to 3 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
593 594
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
595
      return 0;
596 597
    } else if (PyObject_IsInstance(
                   arg0_ptr, reinterpret_cast<PyObject*>(p_tensor_type))) {
598
      VLOG(6) << "Calling case5's or case6's initializer.";
599 600
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num);
601 602 603 604
      return 0;
    } else if (PyObject_IsInstance(arg0_ptr, reinterpret_cast<PyObject*>(
                                                 g_framework_tensor_pytype))) {
      VLOG(6) << "Calling case7's initializer.";
605 606 607
      AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs,
                             args_num,
                             /* false means not init by egr tensor*/ false);
608 609 610
      return 0;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
611 612
          "We support construct Tensor from numpy value "
          "or tensor(Tensor or framework::Tensor) "
613
          "with python args and kwargs by this initializer, "
614
          "but the first argument should be PyArray or Tensor or "
615 616 617
          "framework::Tensor. "
          "Please check your input first and make sure you call the existed "
          "constructor."));
618
    }
619 620 621 622 623
  } else if (args_num == (Py_ssize_t)4) {
    // 4 position args, remainting arguments are kwargs
    PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
    if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
      VLOG(6) << "Calling case3's or case4's initializer.";
624 625
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
626
      return 0;
627 628 629 630 631 632 633
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 4 position args and remainting arguments arg kwargs,"
          "but the first position args should be PyArray. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
634
    }
635 636
  } else if (args_num == (Py_ssize_t)5) {
    if (!flag_kwargs) {
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
      if (PyObject_IsInstance(arg0_ptr,
                              reinterpret_cast<PyObject*>(g_vartype_pytype))) {
        VLOG(6) << "Calling case2's initializer.";
        paddle::framework::proto::VarType::Type dtype =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
        std::vector<int> dims =
            CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1);
        std::string act_name = "";
        PyObject* name_obj = PyTuple_GET_ITEM(args, 2);
        if (name_obj == Py_None) {
          act_name = egr::Controller::Instance().GenerateUniqueName(
              "generated_tensor");
        } else {
          act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2);
        }
        paddle::framework::proto::VarType::Type var_type =
            CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3);
        bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
656 657 658
        EmptyTensorInitializer(py_tensor_ptr, act_name,
                               egr::Controller::Instance().GetExpectedPlace(),
                               persistable, true, dtype, dims, var_type);
659
        return 0;
660 661
      } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's initializer.";
662 663
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
664 665 666
        return 0;
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
667 668 669 670 671
            "Incompatible constructor arguments, "
            "there are only 5 position args,"
            "but the first position args should be PyArray or dtype. "
            "Please check your code and make sure you call the existed "
            "constructor."));
672
      }
673
    } else {  // five position args, remainting arguments are kwargs
674
      PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0);
675 676
      if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) {
        VLOG(6) << "Calling case3's or case4's initializer";
677 678
        AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                                args_num);
679
        return 0;
680
      } else {
681 682 683 684 685 686
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Incompatible constructor arguments, "
            "there are 5 position args and remainting arguments are kwargs,"
            "but the first position args should be PyArray. "
            "Please check your code and make sure the first position args is "
            "PyArray."));
687 688
      }
    }
689 690 691 692
  } else if (args_num == (Py_ssize_t)6) {
    if (!flag_kwargs) {
      // case 3
      VLOG(6) << "Calling case3's initializer.";
693 694
      AutoInitTensorByPyArray(py_tensor_ptr, kws_map, args, flag_kwargs,
                              args_num);
695 696 697 698 699 700 701 702
      return 0;
    } else {  // six position args, remainting arguments are kwargs, but this
              // is not a right way
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible constructor arguments, "
          "there are 6 position args and the remainting arguments are kwargs. "
          "Please check your code and make sure the first position args is "
          "PyArray."));
703
    }
704 705 706 707
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "Can't not find expected num of args, please check your call, and "
        "make sure u call the existed constructor."));
708
  }
709 710

  return 1;
711 712
}

713
static void TensorDealloc(TensorObject* self) {
714
  self->tensor.~Tensor();
715 716 717 718 719 720 721
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

extern struct PyGetSetDef variable_properties[];

extern PyMethodDef variable_methods[];

W
wanghuancoder 已提交
722 723 724 725
PyNumberMethods number_methods;
PySequenceMethods sequence_methods;
PyMappingMethods mapping_methods;

726 727 728
void BindEager(pybind11::module* module) {
  auto m = module->def_submodule("eager");

729 730 731
  auto& internals = pybind11::detail::get_internals();
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      internals.default_metaclass->tp_alloc(internals.default_metaclass, 0));
732 733
  heap_type->ht_name = ToPyObject("Tensor");
  heap_type->ht_qualname = ToPyObject("Tensor");
734
  auto type = &heap_type->ht_type;
735
  type->tp_name = "Tensor";
736
  type->tp_basicsize = sizeof(TensorObject);
737
  type->tp_dealloc = (destructor)TensorDealloc;
738 739 740 741 742
  type->tp_as_number = &number_methods;
  type->tp_as_sequence = &sequence_methods;
  type->tp_as_mapping = &mapping_methods;
  type->tp_methods = variable_methods;
  type->tp_getset = variable_properties;
743 744
  type->tp_init = TensorInit;
  type->tp_new = TensorNew;
745 746 747 748 749 750 751
  Py_INCREF(internals.instance_base);
  type->tp_base = reinterpret_cast<PyTypeObject*>(internals.instance_base);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
752
  p_tensor_type = type;
753 754

  if (PyType_Ready(type) < 0) {
755
    PADDLE_THROW(platform::errors::Fatal(
756
        "Init Paddle error in BindEager(PyType_Ready)."));
757 758 759
    return;
  }

760
  Py_INCREF(type);
761 762
  if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast<PyObject*>(type)) <
      0) {
763
    Py_DECREF(type);
764 765
    Py_DECREF(m.ptr());
    PADDLE_THROW(platform::errors::Fatal(
766
        "Init Paddle error in BindEager(PyModule_AddObject)."));
767 768 769 770
    return;
  }

  BindFunctions(m.ptr());
771
  BindEagerOpFunctions(&m);
772 773 774 775
}

}  // namespace pybind
}  // namespace paddle