layer_function_generator.py 10.5 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
D
dzhwinter 已提交
16 17
import re
import functools
18
import warnings
Y
yuyang18 已提交
19
import string
D
dzhwinter 已提交
20

21
from six.moves import cStringIO
22
from ..proto import framework_pb2
23 24
from ..framework import OpProtoHolder, Variable
from ..layer_helper import LayerHelper
D
dzhwinter 已提交
25

26 27 28 29
__all__ = [
    'deprecated', 'generate_layer_fn', 'generate_layer_fn_noattr', 'autodoc',
    'templatedoc'
]
D
dzhwinter 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


def _convert_(name):
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


Y
yuyang18 已提交
48 49 50 51
def _type_to_str_(tp):
    return framework_pb2.AttrType.Name(tp)


52 53 54 55 56
_two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$")
_single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$")
_two_bang_pattern_ = re.compile(r"!!([^!]+)!!")


Y
yuyang18 已提交
57 58 59 60 61 62 63
def escape_math(text):
    return _two_bang_pattern_.sub(
        r'$$\1$$',
        _single_dollar_pattern_.sub(r':math:`\1`',
                                    _two_dollar_pattern_.sub(r"!!\1!!", text)))


S
sneaxiy 已提交
64
def _generate_doc_string_(op_proto, additional_args_lines=None):
D
dzhwinter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
    """
    Generate docstring by OpProto

    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

78
    buf = cStringIO()
79
    buf.write(escape_math(op_proto.comment))
D
dzhwinter 已提交
80 81 82 83
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
84 85 86 87 88
        buf.write(escape_math(each_input.comment))
        if each_input.duplicable:
            buf.write("  Duplicatable.")
        if each_input.dispensable:
            buf.write("  Optional.")
D
dzhwinter 已提交
89 90
        buf.write('\n')

91 92
    skip_attrs = OpProtoHolder.generated_op_attr_names()

D
dzhwinter 已提交
93
    for each_attr in op_proto.attrs:
94 95
        if each_attr.name in skip_attrs:
            continue
D
dzhwinter 已提交
96 97 98 99 100
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
101
        buf.write(escape_math(each_attr.comment))
D
dzhwinter 已提交
102 103
        buf.write('\n')

S
sneaxiy 已提交
104 105 106 107 108 109 110
    if additional_args_lines is not None:
        for line in additional_args_lines:
            line = line.strip()
            buf.write('    ')
            buf.write(line)
            buf.write('\n')

D
dzhwinter 已提交
111 112 113 114 115 116
    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
117
        buf.write(escape_math(each_opt.comment))
D
dzhwinter 已提交
118 119 120 121

    return buf.getvalue()


122
def generate_layer_fn(op_type):
123
    """Register the Python layer for an Operator.
D
dzhwinter 已提交
124 125

    Args:
126
       op_type: The name of the operator to be created.
D
dzhwinter 已提交
127 128 129 130 131 132 133

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    not_intermediate_outputs = \
134
        [output for output in op_proto.outputs if not output.intermediate]
D
dzhwinter 已提交
135
    intermediate_outputs = \
136
        [output for output in op_proto.outputs if output.intermediate]
D
dzhwinter 已提交
137 138 139

    if len(not_intermediate_outputs) != 1:
        raise ValueError("Only one non intermediate output operator can be",
Y
yuyang18 已提交
140
                         "automatically generated. {0}".format(op_type))
D
dzhwinter 已提交
141 142 143

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
144
            "Only non duplicable op can be automatically generated.")
D
dzhwinter 已提交
145 146 147 148

    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError("The op can be automatically generated only when ",
149
                             "all intermediate ops are not duplicable.")
D
dzhwinter 已提交
150 151 152 153

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

Y
Yu Yang 已提交
154
    def infer_and_check_dtype(op_proto, *args, **kwargs):
D
dzhwinter 已提交
155 156 157 158 159 160 161 162 163 164
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
165 166 167 168
            if len(val) == 0:
                val = [args[0]]
                args = args[1:]

D
dzhwinter 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
                            op_type, dtype, each.dtype))

        return dtype

Y
Yu Yang 已提交
183
    def func(*args, **kwargs):
D
dzhwinter 已提交
184 185
        helper = LayerHelper(op_type, **kwargs)

Y
Yu Yang 已提交
186
        dtype = infer_and_check_dtype(op_proto, *args, **kwargs)
D
dzhwinter 已提交
187 188 189 190 191 192 193

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
194 195 196
            if len(val) == 0 and len(args) != 0:
                val = args[0]
                args = args[1:]
D
dzhwinter 已提交
197 198 199
            inputs[ipt.name] = val

        outputs = dict()
200 201 202 203 204
        out = kwargs.pop(_convert_(o_name), [])
        if out:
            out_var = out[0] if (isinstance(out, list) or
                                 isinstance(out, tuple)) else out
        else:
X
Xin Pan 已提交
205
            out_var = helper.create_variable_for_type_inference(dtype=dtype)
206
        outputs[o_name] = [out_var]
D
dzhwinter 已提交
207
        for name in intermediate_output_names:
X
Xin Pan 已提交
208 209 210
            outputs[name] = [
                helper.create_variable_for_type_inference(dtype=dtype)
            ]
D
dzhwinter 已提交
211 212
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
213
        return helper.append_activation(out_var)
D
dzhwinter 已提交
214 215 216 217 218 219

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


220 221 222 223 224 225 226 227 228 229 230 231
def generate_layer_fn_noattr(op_type):
    """Register the Python layer for an Operator without Attribute.

    Args:
       op_type: The name of the operator to be created.

    This function takes in the operator type (sigmoid, exp , tanh etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)

T
tensor-tang 已提交
232
    def func(x, name=None):
233
        helper = LayerHelper(op_type, **locals())
X
Xin Pan 已提交
234
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
T
tensor-tang 已提交
235
        helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": output})
236 237 238 239 240 241 242
        return output

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


D
dzhwinter 已提交
243 244 245 246 247 248 249 250 251 252 253
def deprecated(func_or_class):
    """
    Deprecated warning decorator. It will result a warning message.
    Should be used before class or function, member function
    """

    @functools.wraps(func)
    def func_wrapper(*args, **kwargs):
        """
        Wrap func with deprecated warning
        """
Y
Yang Yu 已提交
254
        warnings.simplefilter('always', DeprecationWarning)  # turn off filter
D
dzhwinter 已提交
255 256 257 258
        warnings.warn(
            "Call to deprecated function {}.".format(func.__name__),
            category=DeprecationWarning,
            stacklevel=2)
Y
Yang Yu 已提交
259
        warnings.simplefilter('default', DeprecationWarning)  # reset filter
D
dzhwinter 已提交
260 261 262
        return func(*args, **kwargs)

    return func_wrapper
Y
Yang Yu 已提交
263 264


265 266 267 268 269 270 271
def autodoc(comment=""):
    def __impl__(func):
        func.__doc__ = _generate_doc_string_(OpProtoHolder.instance(
        ).get_op_proto(func.__name__)) + comment
        return func

    return __impl__
Y
yuyang18 已提交
272 273


Y
yuyang18 已提交
274
def templatedoc(op_type=None):
Y
yuyang18 已提交
275 276 277 278 279 280 281 282 283 284
    """
    Decorator of layer function. It will use the docstring from the layer
    function as the template. The template arguments are:

    * ${comment}: The operator comment written in CPP.
    * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
        and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
    * ${{name}_type}: The type of ${name}.

    Returns:
Y
yuyang18 已提交
285
        Decorated function.
Y
yuyang18 已提交
286 287
    """

Y
yuyang18 已提交
288 289 290
    def trim_ending_dot(msg):
        return msg.rstrip('.')

Y
yuyang18 已提交
291
    def __impl__(func):
Y
yuyang18 已提交
292 293 294 295 296
        if op_type is None:
            op_type_name = func.__name__
        else:
            op_type_name = op_type
        op_proto = OpProtoHolder.instance().get_op_proto(op_type_name)
Y
yuyang18 已提交
297
        tmpl = string.Template(func.__doc__)
Y
yuyang18 已提交
298 299 300 301

        comment_lines = op_proto.comment.split("\n")
        comment = ""
        for line in comment_lines:
Y
yuyang18 已提交
302 303
            line = line.strip()
            if len(line) != 0:
Y
yuyang18 已提交
304
                comment += escape_math(line)
Y
yuyang18 已提交
305
                comment += " "
Y
yuyang18 已提交
306 307
            elif len(comment) != 0:
                comment += "\n    \n    "
Y
yuyang18 已提交
308

Y
yuyang18 已提交
309
        args = {"comment": trim_ending_dot(comment)}
Y
yuyang18 已提交
310 311
        for each_input in op_proto.inputs:
            input_name = _convert_(each_input.name)
Y
yuyang18 已提交
312 313
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_input.comment)
Y
yuyang18 已提交
314 315 316
            args["{0}_type".format(input_name)] = "Variable"
        for each_attr in op_proto.attrs:
            input_name = _convert_(each_attr.name)
Y
yuyang18 已提交
317 318
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_attr.comment)
Y
yuyang18 已提交
319 320 321 322
            args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)

        for each_opt in op_proto.outputs:
            output_name = _convert_(each_opt.name)
Y
yuyang18 已提交
323 324
            args["{0}_comment".format(output_name)] = trim_ending_dot(
                each_opt.comment)
Y
yuyang18 已提交
325 326 327 328 329
            args["{0}_type".format(output_name)] = "Variable"
        func.__doc__ = tmpl.substitute(args)
        return func

    return __impl__