vgg.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VGG16 benchmark in TensorFlow"""
import tensorflow as tf
import paddle.v2 as paddle
import numpy as np
import argparse
import time

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    '--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
    '--skip_batch_num',
    type=int,
    default=5,
    help='The first num of minibatch num to skip, for better performance test')
parser.add_argument(
    '--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument(
    '--learning_rate',
    type=float,
    default=1e-3,
    help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
    '--device',
    type=str,
    default='GPU',
    choices=['CPU', 'GPU'],
    help="The device type.")
parser.add_argument(
    '--data_format',
    type=str,
    default='NHWC',
    choices=['NCHW', 'NHWC'],
    help='The data order, NCHW=[batch, channels, height, width].'
    'Only support NHWC right now.')
parser.add_argument(
    '--data_set',
    type=str,
    default='cifar10',
    choices=['cifar10', 'flowers'],
    help='Optional dataset for benchmark.')
args = parser.parse_args()


class VGG16Model(object):
    def __init__(self):
        self.parameters = []

    def batch_norm_relu(self, inputs, is_training):
        """Performs a batch normalization followed by a ReLU."""
        # We set fused=True for a significant speed boost. See
        # https://www.tensorflow.org/speed/speed_guide#common_fused_ops
        inputs = tf.layers.batch_normalization(
            inputs=inputs,
            axis=1 if args.data_format == 'NCHW' else -1,
            momentum=0.9,
            epsilon=1e-05,
            center=True,
            scale=True,
            training=is_training,
            fused=True)
        inputs = tf.nn.relu(inputs)
        return inputs

    def conv_bn_layer(self,
                      name,
                      images,
                      kernel_shape,
                      is_training,
                      drop_rate=0.0):
        with tf.name_scope(name) as scope:
            kernel = tf.Variable(
                tf.truncated_normal(
                    kernel_shape, dtype=tf.float32, stddev=1e-1),
                name='weights')
            conv = tf.nn.conv2d(
                images,
                kernel, [1, 1, 1, 1],
                data_format=args.data_format,
                padding='SAME')
            biases = tf.Variable(
                tf.constant(
                    0.0, shape=[kernel_shape[-1]], dtype=tf.float32),
                trainable=True,
                name='biases')
            out = tf.nn.bias_add(conv, biases)
            out = self.batch_norm_relu(out, is_training)
            out = tf.layers.dropout(out, rate=drop_rate, training=is_training)
            return out

    def fc_layer(self, name, inputs, shape):
        with tf.name_scope(name) as scope:
            fc_w = tf.Variable(
                tf.truncated_normal(
                    shape, dtype=tf.float32, stddev=1e-1),
                name='weights')
            fc_b = tf.Variable(
                tf.constant(
                    0.0, shape=[shape[-1]], dtype=tf.float32),
                trainable=True,
                name='biases')
            out = tf.nn.bias_add(tf.matmul(inputs, fc_w), fc_b)
            return out

    def network(self, images, class_dim, is_training):
        """ VGG16 model structure.

            TODO(kuke): enable this network to support the 'NCHW' data format
        """

        # conv1
        conv1_1 = self.conv_bn_layer(
            'conv1_1', images, [3, 3, 3, 64], is_training, drop_rate=0.3)
        conv1_2 = self.conv_bn_layer(
            'conv1_2', conv1_1, [3, 3, 64, 64], is_training, drop_rate=0.0)
        # pool1
        pool1 = tf.nn.max_pool(
            conv1_2,
            ksize=[1, 2, 2, 1],
            strides=[1, 2, 2, 1],
            padding='SAME',
            name='pool1')
        # conv2
        conv2_1 = self.conv_bn_layer(
            'conv2_1', pool1, [3, 3, 64, 128], is_training, drop_rate=0.4)
        conv2_2 = self.conv_bn_layer(
            'conv2_2', conv2_1, [3, 3, 128, 128], is_training, drop_rate=0.0)
        # pool2
        pool2 = tf.nn.max_pool(
            conv2_2,
            ksize=[1, 2, 2, 1],
            strides=[1, 2, 2, 1],
            padding='SAME',
            name='pool2')
        # conv3
        conv3_1 = self.conv_bn_layer(
            'conv3_1', pool2, [3, 3, 128, 256], is_training, drop_rate=0.4)
        conv3_2 = self.conv_bn_layer(
            'conv3_2', conv3_1, [3, 3, 256, 256], is_training, drop_rate=0.4)
        conv3_3 = self.conv_bn_layer(
            'conv3_3', conv3_2, [3, 3, 256, 256], is_training, drop_rate=0.0)
        # pool3
        pool3 = tf.nn.max_pool(
            conv3_3,
            ksize=[1, 2, 2, 1],
            strides=[1, 2, 2, 1],
            padding='SAME',
            name='pool3')
        # conv4
        conv4_1 = self.conv_bn_layer(
            'conv4_1', pool3, [3, 3, 256, 512], is_training, drop_rate=0.4)
        conv4_2 = self.conv_bn_layer(
            'conv4_2', conv4_1, [3, 3, 512, 512], is_training, drop_rate=0.4)
        conv4_3 = self.conv_bn_layer(
            'conv4_3', conv4_2, [3, 3, 512, 512], is_training, drop_rate=0.0)
        # pool4
        pool4 = tf.nn.max_pool(
            conv4_3,
            ksize=[1, 2, 2, 1],
            strides=[1, 2, 2, 1],
            padding='SAME',
            name='pool4')
        # conv5
        conv5_1 = self.conv_bn_layer(
            'conv5_1', pool4, [3, 3, 512, 512], is_training, drop_rate=0.4)
        conv5_2 = self.conv_bn_layer(
            'conv5_2', conv5_1, [3, 3, 512, 512], is_training, drop_rate=0.4)
        conv5_3 = self.conv_bn_layer(
            'conv5_3', conv5_2, [3, 3, 512, 512], is_training, drop_rate=0.0)
        # pool5
        pool5 = tf.nn.max_pool(
            conv5_3,
            ksize=[1, 2, 2, 1],
            strides=[1, 2, 2, 1],
            padding='SAME',
            name='pool4')
        # flatten
        shape = int(np.prod(pool5.get_shape()[1:]))
        pool5_flat = tf.reshape(pool5, [-1, shape])
        # fc1
        drop = tf.layers.dropout(pool5_flat, rate=0.5, training=is_training)
        fc1 = self.fc_layer('fc1', drop, [shape, 512])
        # fc2
        bn = self.batch_norm_relu(fc1, is_training)
        drop = tf.layers.dropout(bn, rate=0.5, training=is_training)
        fc2 = self.fc_layer('fc2', drop, [512, 512])

        fc3 = self.fc_layer('fc3', fc2, [512, class_dim])

        return fc3


def run_benchmark():
    """Run benchmark on cifar10 or flowers."""

    if args.data_set == "cifar10":
        class_dim = 10
        raw_shape = (3, 32, 32)
        dat_shape = (None, 32, 32, 3) if args.data_format == 'NHWC' else (
            None, 3, 32, 32)
    else:
        class_dim = 102
        raw_shape = (3, 224, 224)
        dat_shape = (None, 224, 224, 3) if args.data_format == 'NHWC' else (
            None, 3, 224, 224)

    device = '/cpu:0' if args.device == 'CPU' else '/device:GPU:0'

    with tf.device(device):
        images = tf.placeholder(tf.float32, shape=dat_shape)
        labels = tf.placeholder(tf.int64, shape=(None, ))
        is_training = tf.placeholder('bool')
        onehot_labels = tf.one_hot(labels, depth=class_dim)

        vgg16 = VGG16Model()
        logits = vgg16.network(images, class_dim, is_training)
        loss = tf.losses.softmax_cross_entropy(
            onehot_labels=onehot_labels, logits=logits)
        avg_loss = tf.reduce_mean(loss)

        correct = tf.equal(tf.argmax(logits, 1), labels)
        accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

        optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            train_op = optimizer.minimize(avg_loss)

    # data reader
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
            buf_size=5120),
        batch_size=args.batch_size)
    test_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.test10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
            buf_size=5120),
        batch_size=args.batch_size)

    # test
    def test():
        test_accs = []
        for batch_id, data in enumerate(test_reader()):
            test_images = np.array(
         map(lambda x: np.transpose(x[0].reshape(raw_shape),
         axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32")
            test_labels = np.array(map(lambda x: x[1], data)).astype('int64')
            test_accs.append(
                accuracy.eval(feed_dict={
                    images: test_images,
                    labels: test_labels,
                    is_training: False
                }))
        return np.mean(test_accs)

    config = tf.ConfigProto(
        intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        init_g = tf.global_variables_initializer()
        init_l = tf.local_variables_initializer()
        sess.run(init_g)
        sess.run(init_l)
        iters, num_samples, start_time = 0, 0, time.time()
        for pass_id in range(args.num_passes):
            # train
            num_samples = 0
            start_time = time.time()
            for batch_id, data in enumerate(train_reader()):
                if iters == args.skip_batch_num:
                    start_time = time.time()
                    num_samples = 0
                if iters == args.iterations:
                    break
                train_images = np.array(
                    map(lambda x: np.transpose(x[0].reshape(raw_shape),
                    axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32")
                train_labels = np.array(map(lambda x: x[1], data)).astype(
                    'int64')
                _, loss, acc = sess.run([train_op, avg_loss, accuracy],
                                        feed_dict={
                                            images: train_images,
                                            labels: train_labels,
                                            is_training: True
                                        })
                iters += 1
                num_samples += len(data)
                print("Pass = %d, Iters = %d, Loss = %f, Accuracy = %f" %
                      (pass_id, iters, loss, acc))
            train_elapsed = time.time() - start_time
            # test
            pass_test_acc = test()
            print("Pass = %d, Train speed = %f imgs/s, Test accuracy = %f\n" %
                  (pass_id, num_samples / train_elapsed, pass_test_acc))


def print_arguments():
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == '__main__':
    print_arguments()
    run_benchmark()