# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VGG16 benchmark in TensorFlow""" import tensorflow as tf import paddle.v2 as paddle import numpy as np import argparse import time parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--batch_size', type=int, default=128, help="Batch size for training.") parser.add_argument( '--skip_batch_num', type=int, default=5, help='The first num of minibatch num to skip, for better performance test') parser.add_argument( '--iterations', type=int, default=80, help='The number of minibatches.') parser.add_argument( '--learning_rate', type=float, default=1e-3, help="Learning rate for training.") parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.") parser.add_argument( '--device', type=str, default='GPU', choices=['CPU', 'GPU'], help="The device type.") parser.add_argument( '--data_format', type=str, default='NHWC', choices=['NCHW', 'NHWC'], help='The data order, NCHW=[batch, channels, height, width].' 'Only support NHWC right now.') parser.add_argument( '--data_set', type=str, default='cifar10', choices=['cifar10', 'flowers'], help='Optional dataset for benchmark.') args = parser.parse_args() class VGG16Model(object): def __init__(self): self.parameters = [] def batch_norm_relu(self, inputs, is_training): """Performs a batch normalization followed by a ReLU.""" # We set fused=True for a significant speed boost. See # https://www.tensorflow.org/speed/speed_guide#common_fused_ops inputs = tf.layers.batch_normalization( inputs=inputs, axis=1 if args.data_format == 'NCHW' else -1, momentum=0.9, epsilon=1e-05, center=True, scale=True, training=is_training, fused=True) inputs = tf.nn.relu(inputs) return inputs def conv_bn_layer(self, name, images, kernel_shape, is_training, drop_rate=0.0): with tf.name_scope(name) as scope: kernel = tf.Variable( tf.truncated_normal( kernel_shape, dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d( images, kernel, [1, 1, 1, 1], data_format=args.data_format, padding='SAME') biases = tf.Variable( tf.constant( 0.0, shape=[kernel_shape[-1]], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) out = self.batch_norm_relu(out, is_training) out = tf.layers.dropout(out, rate=drop_rate, training=is_training) return out def fc_layer(self, name, inputs, shape): with tf.name_scope(name) as scope: fc_w = tf.Variable( tf.truncated_normal( shape, dtype=tf.float32, stddev=1e-1), name='weights') fc_b = tf.Variable( tf.constant( 0.0, shape=[shape[-1]], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(tf.matmul(inputs, fc_w), fc_b) return out def network(self, images, class_dim, is_training): """ VGG16 model structure. TODO(kuke): enable this network to support the 'NCHW' data format """ # conv1 conv1_1 = self.conv_bn_layer( 'conv1_1', images, [3, 3, 3, 64], is_training, drop_rate=0.3) conv1_2 = self.conv_bn_layer( 'conv1_2', conv1_1, [3, 3, 64, 64], is_training, drop_rate=0.0) # pool1 pool1 = tf.nn.max_pool( conv1_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # conv2 conv2_1 = self.conv_bn_layer( 'conv2_1', pool1, [3, 3, 64, 128], is_training, drop_rate=0.4) conv2_2 = self.conv_bn_layer( 'conv2_2', conv2_1, [3, 3, 128, 128], is_training, drop_rate=0.0) # pool2 pool2 = tf.nn.max_pool( conv2_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # conv3 conv3_1 = self.conv_bn_layer( 'conv3_1', pool2, [3, 3, 128, 256], is_training, drop_rate=0.4) conv3_2 = self.conv_bn_layer( 'conv3_2', conv3_1, [3, 3, 256, 256], is_training, drop_rate=0.4) conv3_3 = self.conv_bn_layer( 'conv3_3', conv3_2, [3, 3, 256, 256], is_training, drop_rate=0.0) # pool3 pool3 = tf.nn.max_pool( conv3_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool3') # conv4 conv4_1 = self.conv_bn_layer( 'conv4_1', pool3, [3, 3, 256, 512], is_training, drop_rate=0.4) conv4_2 = self.conv_bn_layer( 'conv4_2', conv4_1, [3, 3, 512, 512], is_training, drop_rate=0.4) conv4_3 = self.conv_bn_layer( 'conv4_3', conv4_2, [3, 3, 512, 512], is_training, drop_rate=0.0) # pool4 pool4 = tf.nn.max_pool( conv4_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool4') # conv5 conv5_1 = self.conv_bn_layer( 'conv5_1', pool4, [3, 3, 512, 512], is_training, drop_rate=0.4) conv5_2 = self.conv_bn_layer( 'conv5_2', conv5_1, [3, 3, 512, 512], is_training, drop_rate=0.4) conv5_3 = self.conv_bn_layer( 'conv5_3', conv5_2, [3, 3, 512, 512], is_training, drop_rate=0.0) # pool5 pool5 = tf.nn.max_pool( conv5_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool4') # flatten shape = int(np.prod(pool5.get_shape()[1:])) pool5_flat = tf.reshape(pool5, [-1, shape]) # fc1 drop = tf.layers.dropout(pool5_flat, rate=0.5, training=is_training) fc1 = self.fc_layer('fc1', drop, [shape, 512]) # fc2 bn = self.batch_norm_relu(fc1, is_training) drop = tf.layers.dropout(bn, rate=0.5, training=is_training) fc2 = self.fc_layer('fc2', drop, [512, 512]) fc3 = self.fc_layer('fc3', fc2, [512, class_dim]) return fc3 def run_benchmark(): """Run benchmark on cifar10 or flowers.""" if args.data_set == "cifar10": class_dim = 10 raw_shape = (3, 32, 32) dat_shape = (None, 32, 32, 3) if args.data_format == 'NHWC' else ( None, 3, 32, 32) else: class_dim = 102 raw_shape = (3, 224, 224) dat_shape = (None, 224, 224, 3) if args.data_format == 'NHWC' else ( None, 3, 224, 224) device = '/cpu:0' if args.device == 'CPU' else '/device:GPU:0' with tf.device(device): images = tf.placeholder(tf.float32, shape=dat_shape) labels = tf.placeholder(tf.int64, shape=(None, )) is_training = tf.placeholder('bool') onehot_labels = tf.one_hot(labels, depth=class_dim) vgg16 = VGG16Model() logits = vgg16.network(images, class_dim, is_training) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) avg_loss = tf.reduce_mean(loss) correct = tf.equal(tf.argmax(logits, 1), labels) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(avg_loss) # data reader train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10() if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), buf_size=5120), batch_size=args.batch_size) test_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), buf_size=5120), batch_size=args.batch_size) # test def test(): test_accs = [] for batch_id, data in enumerate(test_reader()): test_images = np.array( map(lambda x: np.transpose(x[0].reshape(raw_shape), axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32") test_labels = np.array(map(lambda x: x[1], data)).astype('int64') test_accs.append( accuracy.eval(feed_dict={ images: test_images, labels: test_labels, is_training: False })) return np.mean(test_accs) config = tf.ConfigProto( intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: init_g = tf.global_variables_initializer() init_l = tf.local_variables_initializer() sess.run(init_g) sess.run(init_l) iters, num_samples, start_time = 0, 0, time.time() for pass_id in range(args.num_passes): # train num_samples = 0 start_time = time.time() for batch_id, data in enumerate(train_reader()): if iters == args.skip_batch_num: start_time = time.time() num_samples = 0 if iters == args.iterations: break train_images = np.array( map(lambda x: np.transpose(x[0].reshape(raw_shape), axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32") train_labels = np.array(map(lambda x: x[1], data)).astype( 'int64') _, loss, acc = sess.run([train_op, avg_loss, accuracy], feed_dict={ images: train_images, labels: train_labels, is_training: True }) iters += 1 num_samples += len(data) print("Pass = %d, Iters = %d, Loss = %f, Accuracy = %f" % (pass_id, iters, loss, acc)) train_elapsed = time.time() - start_time # test pass_test_acc = test() print("Pass = %d, Train speed = %f imgs/s, Test accuracy = %f\n" % (pass_id, num_samples / train_elapsed, pass_test_acc)) def print_arguments(): print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).iteritems()): print('%s: %s' % (arg, value)) print('------------------------------------------------') if __name__ == '__main__': print_arguments() run_benchmark()