sparse_momentum_op.h 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <memory>
#include <string>
#include <vector>
20

21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/for_range.h"

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

namespace paddle {
namespace operators {

template <typename T>
using MultiPrecisionType = typename details::MPTypeTrait<T>::Type;

enum class RegularizationType {
  kNONE = 0,
  kL1DECAY = 1,  // do not need support right now
  kL2DECAY = 2,
};

template <typename T>
struct NoNesterov {
50 51
  HOSTDEVICE inline T operator()(const T& grad,
                                 const T& velocity,
52 53 54 55 56 57 58
                                 const T& mu) const {
    return velocity;
  }
};

template <typename T>
struct UseNesterov {
59 60
  HOSTDEVICE inline T operator()(const T& grad,
                                 const T& velocity,
61 62 63 64 65 66 67 68 69
                                 const T& mu) const {
    return grad + velocity * mu;
  }
};

// The following code is from
// https://en.cppreference.com/w/cpp/algorithm/lower_bound
// https://en.cppreference.com/w/cpp/algorithm/upper_bound
template <typename T>
70 71
HOSTDEVICE inline void BinarySearchLowerUpperBound(const T* x,
                                                   int64_t num,
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
                                                   const T& value,
                                                   int64_t* lower_bound,
                                                   int64_t* upper_bound) {
  *lower_bound = -1;
  *upper_bound = -1;

  auto* first = x;
  int64_t count = static_cast<int64_t>(num);
  while (count > 0) {
    int64_t step = (count >> 1);
    auto* it = first + step;
    if (*it < value) {
      first = ++it;
      count -= (step + 1);
    } else {
      count = step;
    }
  }
  auto idx = static_cast<int64_t>(first - x);
  if ((idx > 0 && idx < num) || (idx == 0 && x[idx] == value)) {
    *lower_bound = idx;
  }

  if (*lower_bound >= 0) {
    first = x + idx;
    count = static_cast<int64_t>(num - idx);
    while (count > 0) {
      auto step = (count >> 1);
      auto* it = first + step;
      if (value < *it) {
        count = step;
      } else {
        first = ++it;
        count -= (step + 1);
      }
    }
    auto upper_idx = static_cast<int64_t>(first - x) - 1;
    if ((upper_idx >= 0 && upper_idx < num - 1) ||
        (upper_idx == num - 1 && x[upper_idx] == value)) {
      *upper_bound = upper_idx;
    }
  }
  return;
}

template <typename T>
class RangeFunctor {
 private:
  T* value_;

 public:
  explicit RangeFunctor(T* value) : value_(value) {}
  inline HOSTDEVICE void operator()(size_t i) { value_[i] = static_cast<T>(i); }
};

class SparseMomentumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override;
};

class SparseMomentumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Param"), "Input", "Param", "SparseMomentum");
    OP_INOUT_CHECK(ctx->HasInput("Grad"), "Input", "Grad", "SparseMomentum");
140 141
    OP_INOUT_CHECK(
        ctx->HasInput("Velocity"), "Input", "Velocity", "SparseMomentum");
142
    OP_INOUT_CHECK(ctx->HasInput("Index"), "Input", "Index", "SparseMomentum");
143 144 145
    OP_INOUT_CHECK(ctx->HasInput("LearningRate"),
                   "Input",
                   "LearningRate",
146
                   "SparseMomentum");
147 148 149 150 151
    OP_INOUT_CHECK(
        ctx->HasOutput("ParamOut"), "Output", "ParamOut", "SparseMomentum");
    OP_INOUT_CHECK(ctx->HasOutput("VelocityOut"),
                   "Output",
                   "VelocityOut",
152 153
                   "SparseMomentum");

154
    auto lr_dims = phi::product(ctx->GetInputDim("LearningRate"));
155 156
    PADDLE_ENFORCE_EQ(lr_dims != 0 && lr_dims == 1,
                      true,
157 158 159 160 161 162 163
                      platform::errors::InvalidArgument(
                          "Learning_rate should be a scalar. But Received "
                          "LearningRate's dim [%s]",
                          lr_dims));

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
164 165
        param_dim,
        ctx->GetInputDim("Velocity"),
166 167 168
        platform::errors::InvalidArgument(
            "Param and Velocity of SparseMomentumOp should have the same "
            "dimension. But received Param's dim [%s] and Velocity [%s].",
169 170
            param_dim,
            ctx->GetInputDim("Velocity")));
171 172 173 174 175 176 177 178

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("VelocityOut", param_dim);
    if (ctx->HasOutput("MasterParamOut")) {
      ctx->SetOutputDim("MasterParamOut", param_dim);
    }
  }

179
  phi::KernelKey GetExpectedKernelType(
180 181 182
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "Param");
183
    return phi::KernelKey(input_data_type, ctx.GetPlace());
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  }
};

template <typename T, typename MT, typename IndexT, typename UpdateMethod>
class IndexMomentumFunctor {
 private:
  const T* param_;
  const T* grad_;
  const MT* velocity_;
  const MultiPrecisionType<MT>* lr_;
  const MT* master_param_;
  const MT mu_;
  const MT rescale_grad_;
  const IndexT* sorted_index_;
  const IndexT* grad_index_;
  const int64_t num_index_;
  const int axis_;
  const int64_t param_row_numel_;
  const int64_t grad_row_numel_;
  T* param_out_;
  MT* velocity_out_;
  MT* master_param_out_;
  const RegularizationType regularization_flag_;
  const MT regularization_coeff_;
  const UpdateMethod& update_method_;

 public:
211 212 213 214 215 216 217 218 219 220 221 222
  IndexMomentumFunctor(const T* param,
                       const T* grad,
                       const MT* velocity,
                       const MultiPrecisionType<MT>* lr,
                       const MT* master_param,
                       const MT mu,
                       const MT rescale_grad,
                       const IndexT* sorted_index,
                       const IndexT* grad_index,
                       int64_t num_index,
                       int axis,
                       int64_t param_row_numel,
223 224 225
                       int64_t grad_row_numel,
                       const RegularizationType regularization_flag,
                       const MT regularization_coeff,
226 227 228 229
                       const UpdateMethod& update_method,
                       T* param_out,
                       MT* velocity_out,
                       MT* master_param_out)
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
      : param_(param),
        grad_(grad),
        velocity_(velocity),
        lr_(lr),
        master_param_(master_param),
        mu_(mu),
        rescale_grad_(rescale_grad),
        sorted_index_(sorted_index),
        grad_index_(grad_index),
        num_index_(num_index),
        axis_(axis),
        param_row_numel_(param_row_numel),
        grad_row_numel_(grad_row_numel),
        param_out_(param_out),
        velocity_out_(velocity_out),
        master_param_out_(master_param_out),
        regularization_flag_(regularization_flag),
        regularization_coeff_(regularization_coeff),
        update_method_(update_method) {}

  inline HOSTDEVICE void operator()(size_t i) {
    MT grad = static_cast<MT>(0);
    size_t row = i / param_row_numel_;
    size_t col = i % param_row_numel_;
    if (axis_ == 0) {
      int64_t row_idx0, row_idx1;
256 257
      BinarySearchLowerUpperBound<IndexT>(
          sorted_index_, num_index_, row, &row_idx0, &row_idx1);
258 259 260 261 262 263 264 265
      if (row_idx0 >= 0 && row_idx1 >= 0) {
        for (int64_t row_idx = row_idx0; row_idx <= row_idx1; row_idx++) {
          size_t offset = grad_index_[row_idx] * param_row_numel_ + col;
          grad += static_cast<MT>(grad_[offset]) * rescale_grad_;
        }
      }
    } else if (axis_ == 1) {
      int64_t col_idx0, col_idx1;
266 267
      BinarySearchLowerUpperBound<IndexT>(
          sorted_index_, num_index_, col, &col_idx0, &col_idx1);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
      if (col_idx0 >= 0 && col_idx1 >= 0) {
        for (int64_t col_idx = col_idx0; col_idx <= col_idx1; col_idx++) {
          size_t offset = row * grad_row_numel_ + grad_index_[col_idx];
          grad += static_cast<MT>(grad_[offset]) * rescale_grad_;
        }
      }
    }

    // put memory access in register
    const MT param =
        master_param_ ? master_param_[i] : static_cast<MT>(param_[i]);
    const MT lr = static_cast<MT>(lr_[0]);
    const MT velocity = velocity_[i];

    grad = regularization_flag_ == RegularizationType::kL2DECAY
               ? grad + regularization_coeff_ * param
               : grad;

    MT velocity_out = velocity * mu_ + grad;
    MT velocity_tmp = update_method_(grad, velocity_out, mu_);
    MT param_out = param - velocity_tmp * lr;
R
RedContritio 已提交
289
    // write register to memory
290 291 292 293 294 295 296 297
    velocity_out_[i] = velocity_out;
    param_out_[i] = static_cast<T>(param_out);
    if (master_param_out_) {
      master_param_out_[i] = param_out;
    }
  }
};

298
template <typename T, typename DeviceContext>
299 300 301 302 303 304 305
class SparseMomentumOpKernel : public framework::OpKernel<T> {
  using MPDType = MultiPrecisionType<T>;

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const bool multi_precision = ctx.Attr<bool>("multi_precision");
    bool use_nesterov = ctx.Attr<bool>("use_nesterov");
306
    auto index = ctx.Input<phi::DenseTensor>("Index");
307
    const auto& index_type = framework::TransToProtoVarType(index->dtype());
308 309 310 311
    if (multi_precision) {
      if (use_nesterov) {
        auto update_method = UseNesterov<MPDType>();
        if (index_type == framework::proto::VarType::INT32) {
312 313
          InnerCompute<MPDType, int, UseNesterov<MPDType>>(
              ctx, multi_precision, update_method);
314 315 316 317 318 319 320
        } else {
          InnerCompute<MPDType, int64_t, UseNesterov<MPDType>>(
              ctx, multi_precision, update_method);
        }
      } else {
        auto update_method = NoNesterov<MPDType>();
        if (index_type == framework::proto::VarType::INT32) {
321 322
          InnerCompute<MPDType, int, NoNesterov<MPDType>>(
              ctx, multi_precision, update_method);
323 324 325 326 327 328 329 330 331
        } else {
          InnerCompute<MPDType, int64_t, NoNesterov<MPDType>>(
              ctx, multi_precision, update_method);
        }
      }
    } else {
      if (use_nesterov) {
        auto update_method = UseNesterov<T>();
        if (index_type == framework::proto::VarType::INT32) {
332 333
          InnerCompute<T, int, UseNesterov<T>>(
              ctx, multi_precision, update_method);
334
        } else {
335 336
          InnerCompute<T, int64_t, UseNesterov<T>>(
              ctx, multi_precision, update_method);
337 338 339 340
        }
      } else {
        auto update_method = NoNesterov<T>();
        if (index_type == framework::proto::VarType::INT32) {
341 342
          InnerCompute<T, int, NoNesterov<T>>(
              ctx, multi_precision, update_method);
343
        } else {
344 345
          InnerCompute<T, int64_t, NoNesterov<T>>(
              ctx, multi_precision, update_method);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
        }
      }
    }
  }

 private:
  template <typename MT, typename IndexT, typename UpdateMethod>
  void InnerCompute(const framework::ExecutionContext& ctx,
                    const bool multi_precision,
                    const UpdateMethod& update_method) const {
    std::string regularization_method =
        ctx.Attr<std::string>("regularization_method");
    MT regularization_coeff =
        static_cast<MT>(ctx.Attr<float>("regularization_coeff"));
    RegularizationType regularization_flag{
        RegularizationType::kNONE};  // disable regularization
    if (regularization_method == "l2_decay") {
      regularization_flag = RegularizationType::kL2DECAY;
    }

    MT mu = static_cast<MT>(ctx.Attr<float>("mu"));
    MT rescale_grad = static_cast<MT>(ctx.Attr<float>("rescale_grad"));

    int axis = ctx.Attr<int>("axis");
    // get axis from tensor
    if (ctx.HasInput("Axis")) {
372 373
      phi::DenseTensor cpu_axis;
      const phi::DenseTensor* axis_tensor = ctx.Input<phi::DenseTensor>("Axis");
374
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
375 376
      const auto& axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
377 378 379 380 381 382 383
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
      }
    }
    PADDLE_ENFORCE_EQ(
384 385
        axis == 0 || axis == 1,
        true,
386 387 388
        platform::errors::InvalidArgument("The axis of sparse_momentum_op only "
                                          "support axis=0 or axis=1 now."));

389 390 391 392 393 394
    auto learning_rate = ctx.Input<phi::DenseTensor>("LearningRate");
    auto param = ctx.Input<phi::DenseTensor>("Param");
    auto param_out = ctx.Output<phi::DenseTensor>("ParamOut");
    auto velocity = ctx.Input<phi::DenseTensor>("Velocity");
    auto velocity_out = ctx.Output<phi::DenseTensor>("VelocityOut");
    auto index = ctx.Input<phi::DenseTensor>("Index");
395 396 397 398 399
    int64_t num_index = index->numel();

    // check index of shape 1-D
    if (index->dims().size() == 1) {
      PADDLE_ENFORCE_GT(
400 401
          index->dims()[0],
          0,
402 403 404 405
          platform::errors::InvalidArgument(
              "The index of sparse_momentum_op should not be empty"
              "when the index's rank is 1."));
    } else if (index->dims().size() == 2) {
406 407
      PADDLE_ENFORCE_EQ(index->dims()[1],
                        1,
408 409 410 411 412
                        platform::errors::InvalidArgument(
                            "If the index's rank of sparse_momentum_op is 2,"
                            " the second dimension should be 1."));
    }

413 414
    const phi::DenseTensor* master_param = nullptr;
    phi::DenseTensor* master_param_out = nullptr;
415 416 417
    if (multi_precision) {
      bool has_master =
          ctx.HasInput("MasterParam") && ctx.HasOutput("MasterParamOut");
418 419
      PADDLE_ENFORCE_EQ(has_master,
                        true,
420 421 422 423
                        platform::errors::InvalidArgument(
                            "The Input(MasterParam) and Output(MasterParamOut) "
                            "should not be null when "
                            "the attr `multi_precision` is true"));
424 425
      master_param = ctx.Input<phi::DenseTensor>("MasterParam");
      master_param_out = ctx.Output<phi::DenseTensor>("MasterParamOut");
426 427 428 429 430 431 432 433 434 435
    }

    param_out->mutable_data<T>(ctx.GetPlace());
    velocity_out->mutable_data<MT>(ctx.GetPlace());
    const MT* master_in_data =
        multi_precision ? master_param->data<MT>() : nullptr;
    MT* master_out_data =
        multi_precision ? master_param_out->mutable_data<MT>(ctx.GetPlace())
                        : nullptr;

436
    auto grad = ctx.Input<phi::DenseTensor>("Grad");
437 438 439 440 441 442 443 444

    platform::ForRange<DeviceContext> for_range(
        static_cast<const DeviceContext&>(ctx.device_context()),
        param->numel());

    auto param_dims = param->dims();
    auto grad_dims = grad->dims();

445 446
    PADDLE_ENFORCE_EQ(param_dims.size(),
                      2,
447 448 449
                      platform::errors::InvalidArgument(
                          "The Param's rank of sparse_momentum_op"
                          " must be 2 now."));
450 451
    PADDLE_ENFORCE_EQ(grad_dims.size(),
                      2,
452 453 454 455
                      platform::errors::InvalidArgument(
                          "The Grad's rank of sparse_momentum_op"
                          " must be 2 now."));

456
    phi::DenseTensor sorted_index, grad_index, sort_value;
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    auto sorted_index_ptr =
        sorted_index.mutable_data<IndexT>({num_index}, ctx.GetPlace());
    auto grad_index_ptr =
        grad_index.mutable_data<IndexT>({num_index}, ctx.GetPlace());

    if (platform::is_gpu_place(ctx.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
      auto sort_value_ptr =
          sort_value.mutable_data<IndexT>({num_index}, ctx.GetPlace());

      platform::ForRange<DeviceContext> for_range_index(
          static_cast<const DeviceContext&>(ctx.device_context()), num_index);
      RangeFunctor<IndexT> range_functor(sort_value_ptr);
      for_range_index(range_functor);

      size_t temp_storage_bytes = 0;
473
      PADDLE_ENFORCE_GPU_SUCCESS(
474
          (cub::DeviceRadixSort::SortPairs<IndexT, IndexT>(
475 476 477 478 479 480
              nullptr,
              temp_storage_bytes,
              nullptr,
              nullptr,
              nullptr,
              nullptr,
481 482
              static_cast<int>(num_index))));
      auto d_temp_storage = memory::Alloc(ctx.GetPlace(), temp_storage_bytes);
483
      PADDLE_ENFORCE_GPU_SUCCESS(
484
          (cub::DeviceRadixSort::SortPairs<IndexT, IndexT>(
485 486 487 488 489 490 491 492 493
              d_temp_storage->ptr(),
              temp_storage_bytes,
              index->data<IndexT>(),
              sorted_index_ptr,
              sort_value_ptr,
              grad_index_ptr,
              static_cast<int>(num_index),
              0,
              sizeof(IndexT) * 8,
494 495 496 497 498 499 500 501
              ctx.cuda_device_context().stream())));
#endif
    } else if (platform::is_cpu_place(ctx.GetPlace())) {
      std::vector<std::pair<IndexT, IndexT>> vec_tosort;
      auto index_ptr = index->data<IndexT>();
      for (IndexT i = 0; i < num_index; i++) {
        vec_tosort.push_back({index_ptr[i], i});
      }
502 503
      std::sort(vec_tosort.begin(),
                vec_tosort.end(),
504 505 506 507 508 509 510 511 512 513 514 515 516 517
                [](const std::pair<IndexT, IndexT>& k1,
                   const std::pair<IndexT, IndexT>& k2) {
                  return k1.first < k2.first;
                });
      for (IndexT i = 0; i < num_index; i++) {
        sorted_index_ptr[i] = vec_tosort[i].first;
        grad_index_ptr[i] = vec_tosort[i].second;
      }
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "sparse_momentum %s is not supported.", ctx.GetPlace()));
    }

    IndexMomentumFunctor<T, MT, IndexT, UpdateMethod> functor(
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        param->data<T>(),
        grad->data<T>(),
        velocity->data<MT>(),
        learning_rate->data<MPDType>(),
        master_in_data,
        mu,
        rescale_grad,
        sorted_index_ptr,
        grad_index_ptr,
        num_index,
        axis,
        param_dims[1],
        grad_dims[1],
        regularization_flag,
        regularization_coeff,
        update_method,
534
        param_out->mutable_data<T>(ctx.GetPlace()),
535 536
        velocity_out->mutable_data<MT>(ctx.GetPlace()),
        master_out_data);
537 538 539 540 541 542
    for_range(functor);
  }
};

}  // namespace operators
}  // namespace paddle