sparse_momentum_op.h 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <memory>
#include <string>
#include <vector>
20

21
#include "paddle/fluid/framework/convert_utils.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/for_range.h"

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename T>
using MultiPrecisionType = typename details::MPTypeTrait<T>::Type;

enum class RegularizationType {
  kNONE = 0,
  kL1DECAY = 1,  // do not need support right now
  kL2DECAY = 2,
};

template <typename T>
struct NoNesterov {
52 53
  HOSTDEVICE inline T operator()(const T& grad,
                                 const T& velocity,
54 55 56 57 58 59 60
                                 const T& mu) const {
    return velocity;
  }
};

template <typename T>
struct UseNesterov {
61 62
  HOSTDEVICE inline T operator()(const T& grad,
                                 const T& velocity,
63 64 65 66 67 68 69 70 71
                                 const T& mu) const {
    return grad + velocity * mu;
  }
};

// The following code is from
// https://en.cppreference.com/w/cpp/algorithm/lower_bound
// https://en.cppreference.com/w/cpp/algorithm/upper_bound
template <typename T>
72 73
HOSTDEVICE inline void BinarySearchLowerUpperBound(const T* x,
                                                   int64_t num,
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
                                                   const T& value,
                                                   int64_t* lower_bound,
                                                   int64_t* upper_bound) {
  *lower_bound = -1;
  *upper_bound = -1;

  auto* first = x;
  int64_t count = static_cast<int64_t>(num);
  while (count > 0) {
    int64_t step = (count >> 1);
    auto* it = first + step;
    if (*it < value) {
      first = ++it;
      count -= (step + 1);
    } else {
      count = step;
    }
  }
  auto idx = static_cast<int64_t>(first - x);
  if ((idx > 0 && idx < num) || (idx == 0 && x[idx] == value)) {
    *lower_bound = idx;
  }

  if (*lower_bound >= 0) {
    first = x + idx;
    count = static_cast<int64_t>(num - idx);
    while (count > 0) {
      auto step = (count >> 1);
      auto* it = first + step;
      if (value < *it) {
        count = step;
      } else {
        first = ++it;
        count -= (step + 1);
      }
    }
    auto upper_idx = static_cast<int64_t>(first - x) - 1;
    if ((upper_idx >= 0 && upper_idx < num - 1) ||
        (upper_idx == num - 1 && x[upper_idx] == value)) {
      *upper_bound = upper_idx;
    }
  }
  return;
}

template <typename T>
class RangeFunctor {
 private:
  T* value_;

 public:
  explicit RangeFunctor(T* value) : value_(value) {}
  inline HOSTDEVICE void operator()(size_t i) { value_[i] = static_cast<T>(i); }
};

class SparseMomentumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override;
};

class SparseMomentumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Param"), "Input", "Param", "SparseMomentum");
    OP_INOUT_CHECK(ctx->HasInput("Grad"), "Input", "Grad", "SparseMomentum");
142 143
    OP_INOUT_CHECK(
        ctx->HasInput("Velocity"), "Input", "Velocity", "SparseMomentum");
144
    OP_INOUT_CHECK(ctx->HasInput("Index"), "Input", "Index", "SparseMomentum");
145 146 147
    OP_INOUT_CHECK(ctx->HasInput("LearningRate"),
                   "Input",
                   "LearningRate",
148
                   "SparseMomentum");
149 150 151 152 153
    OP_INOUT_CHECK(
        ctx->HasOutput("ParamOut"), "Output", "ParamOut", "SparseMomentum");
    OP_INOUT_CHECK(ctx->HasOutput("VelocityOut"),
                   "Output",
                   "VelocityOut",
154 155
                   "SparseMomentum");

156
    auto lr_dims = phi::product(ctx->GetInputDim("LearningRate"));
157 158
    PADDLE_ENFORCE_EQ(lr_dims != 0 && lr_dims == 1,
                      true,
159 160 161 162 163 164 165
                      platform::errors::InvalidArgument(
                          "Learning_rate should be a scalar. But Received "
                          "LearningRate's dim [%s]",
                          lr_dims));

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
166 167
        param_dim,
        ctx->GetInputDim("Velocity"),
168 169 170
        platform::errors::InvalidArgument(
            "Param and Velocity of SparseMomentumOp should have the same "
            "dimension. But received Param's dim [%s] and Velocity [%s].",
171 172
            param_dim,
            ctx->GetInputDim("Velocity")));
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("VelocityOut", param_dim);
    if (ctx->HasOutput("MasterParamOut")) {
      ctx->SetOutputDim("MasterParamOut", param_dim);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "Param");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T, typename MT, typename IndexT, typename UpdateMethod>
class IndexMomentumFunctor {
 private:
  const T* param_;
  const T* grad_;
  const MT* velocity_;
  const MultiPrecisionType<MT>* lr_;
  const MT* master_param_;
  const MT mu_;
  const MT rescale_grad_;
  const IndexT* sorted_index_;
  const IndexT* grad_index_;
  const int64_t num_index_;
  const int axis_;
  const int64_t param_row_numel_;
  const int64_t grad_row_numel_;
  T* param_out_;
  MT* velocity_out_;
  MT* master_param_out_;
  const RegularizationType regularization_flag_;
  const MT regularization_coeff_;
  const UpdateMethod& update_method_;

 public:
213 214 215 216 217 218 219 220 221 222 223 224
  IndexMomentumFunctor(const T* param,
                       const T* grad,
                       const MT* velocity,
                       const MultiPrecisionType<MT>* lr,
                       const MT* master_param,
                       const MT mu,
                       const MT rescale_grad,
                       const IndexT* sorted_index,
                       const IndexT* grad_index,
                       int64_t num_index,
                       int axis,
                       int64_t param_row_numel,
225 226 227
                       int64_t grad_row_numel,
                       const RegularizationType regularization_flag,
                       const MT regularization_coeff,
228 229 230 231
                       const UpdateMethod& update_method,
                       T* param_out,
                       MT* velocity_out,
                       MT* master_param_out)
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
      : param_(param),
        grad_(grad),
        velocity_(velocity),
        lr_(lr),
        master_param_(master_param),
        mu_(mu),
        rescale_grad_(rescale_grad),
        sorted_index_(sorted_index),
        grad_index_(grad_index),
        num_index_(num_index),
        axis_(axis),
        param_row_numel_(param_row_numel),
        grad_row_numel_(grad_row_numel),
        param_out_(param_out),
        velocity_out_(velocity_out),
        master_param_out_(master_param_out),
        regularization_flag_(regularization_flag),
        regularization_coeff_(regularization_coeff),
        update_method_(update_method) {}

  inline HOSTDEVICE void operator()(size_t i) {
    MT grad = static_cast<MT>(0);
    size_t row = i / param_row_numel_;
    size_t col = i % param_row_numel_;
    if (axis_ == 0) {
      int64_t row_idx0, row_idx1;
258 259
      BinarySearchLowerUpperBound<IndexT>(
          sorted_index_, num_index_, row, &row_idx0, &row_idx1);
260 261 262 263 264 265 266 267
      if (row_idx0 >= 0 && row_idx1 >= 0) {
        for (int64_t row_idx = row_idx0; row_idx <= row_idx1; row_idx++) {
          size_t offset = grad_index_[row_idx] * param_row_numel_ + col;
          grad += static_cast<MT>(grad_[offset]) * rescale_grad_;
        }
      }
    } else if (axis_ == 1) {
      int64_t col_idx0, col_idx1;
268 269
      BinarySearchLowerUpperBound<IndexT>(
          sorted_index_, num_index_, col, &col_idx0, &col_idx1);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
      if (col_idx0 >= 0 && col_idx1 >= 0) {
        for (int64_t col_idx = col_idx0; col_idx <= col_idx1; col_idx++) {
          size_t offset = row * grad_row_numel_ + grad_index_[col_idx];
          grad += static_cast<MT>(grad_[offset]) * rescale_grad_;
        }
      }
    }

    // put memory access in register
    const MT param =
        master_param_ ? master_param_[i] : static_cast<MT>(param_[i]);
    const MT lr = static_cast<MT>(lr_[0]);
    const MT velocity = velocity_[i];

    grad = regularization_flag_ == RegularizationType::kL2DECAY
               ? grad + regularization_coeff_ * param
               : grad;

    MT velocity_out = velocity * mu_ + grad;
    MT velocity_tmp = update_method_(grad, velocity_out, mu_);
    MT param_out = param - velocity_tmp * lr;
    // write reigster to memory
    velocity_out_[i] = velocity_out;
    param_out_[i] = static_cast<T>(param_out);
    if (master_param_out_) {
      master_param_out_[i] = param_out;
    }
  }
};

template <typename DeviceContext, typename T>
class SparseMomentumOpKernel : public framework::OpKernel<T> {
  using MPDType = MultiPrecisionType<T>;

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const bool multi_precision = ctx.Attr<bool>("multi_precision");
    bool use_nesterov = ctx.Attr<bool>("use_nesterov");
    auto index = ctx.Input<framework::Tensor>("Index");
309
    const auto& index_type = framework::TransToProtoVarType(index->dtype());
310 311 312 313
    if (multi_precision) {
      if (use_nesterov) {
        auto update_method = UseNesterov<MPDType>();
        if (index_type == framework::proto::VarType::INT32) {
314 315
          InnerCompute<MPDType, int, UseNesterov<MPDType>>(
              ctx, multi_precision, update_method);
316 317 318 319 320 321 322
        } else {
          InnerCompute<MPDType, int64_t, UseNesterov<MPDType>>(
              ctx, multi_precision, update_method);
        }
      } else {
        auto update_method = NoNesterov<MPDType>();
        if (index_type == framework::proto::VarType::INT32) {
323 324
          InnerCompute<MPDType, int, NoNesterov<MPDType>>(
              ctx, multi_precision, update_method);
325 326 327 328 329 330 331 332 333
        } else {
          InnerCompute<MPDType, int64_t, NoNesterov<MPDType>>(
              ctx, multi_precision, update_method);
        }
      }
    } else {
      if (use_nesterov) {
        auto update_method = UseNesterov<T>();
        if (index_type == framework::proto::VarType::INT32) {
334 335
          InnerCompute<T, int, UseNesterov<T>>(
              ctx, multi_precision, update_method);
336
        } else {
337 338
          InnerCompute<T, int64_t, UseNesterov<T>>(
              ctx, multi_precision, update_method);
339 340 341 342
        }
      } else {
        auto update_method = NoNesterov<T>();
        if (index_type == framework::proto::VarType::INT32) {
343 344
          InnerCompute<T, int, NoNesterov<T>>(
              ctx, multi_precision, update_method);
345
        } else {
346 347
          InnerCompute<T, int64_t, NoNesterov<T>>(
              ctx, multi_precision, update_method);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        }
      }
    }
  }

 private:
  template <typename MT, typename IndexT, typename UpdateMethod>
  void InnerCompute(const framework::ExecutionContext& ctx,
                    const bool multi_precision,
                    const UpdateMethod& update_method) const {
    std::string regularization_method =
        ctx.Attr<std::string>("regularization_method");
    MT regularization_coeff =
        static_cast<MT>(ctx.Attr<float>("regularization_coeff"));
    RegularizationType regularization_flag{
        RegularizationType::kNONE};  // disable regularization
    if (regularization_method == "l2_decay") {
      regularization_flag = RegularizationType::kL2DECAY;
    }

    MT mu = static_cast<MT>(ctx.Attr<float>("mu"));
    MT rescale_grad = static_cast<MT>(ctx.Attr<float>("rescale_grad"));

    int axis = ctx.Attr<int>("axis");
    // get axis from tensor
    if (ctx.HasInput("Axis")) {
      Tensor cpu_axis;
      const Tensor* axis_tensor = ctx.Input<Tensor>("Axis");
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
377 378
      const auto& axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
379 380 381 382 383 384 385
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
      }
    }
    PADDLE_ENFORCE_EQ(
386 387
        axis == 0 || axis == 1,
        true,
388 389 390 391 392 393 394 395 396 397 398 399 400 401
        platform::errors::InvalidArgument("The axis of sparse_momentum_op only "
                                          "support axis=0 or axis=1 now."));

    auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    auto param = ctx.Input<framework::Tensor>("Param");
    auto param_out = ctx.Output<framework::Tensor>("ParamOut");
    auto velocity = ctx.Input<framework::Tensor>("Velocity");
    auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
    auto index = ctx.Input<framework::Tensor>("Index");
    int64_t num_index = index->numel();

    // check index of shape 1-D
    if (index->dims().size() == 1) {
      PADDLE_ENFORCE_GT(
402 403
          index->dims()[0],
          0,
404 405 406 407
          platform::errors::InvalidArgument(
              "The index of sparse_momentum_op should not be empty"
              "when the index's rank is 1."));
    } else if (index->dims().size() == 2) {
408 409
      PADDLE_ENFORCE_EQ(index->dims()[1],
                        1,
410 411 412 413 414 415 416 417 418 419
                        platform::errors::InvalidArgument(
                            "If the index's rank of sparse_momentum_op is 2,"
                            " the second dimension should be 1."));
    }

    const framework::Tensor* master_param = nullptr;
    framework::Tensor* master_param_out = nullptr;
    if (multi_precision) {
      bool has_master =
          ctx.HasInput("MasterParam") && ctx.HasOutput("MasterParamOut");
420 421
      PADDLE_ENFORCE_EQ(has_master,
                        true,
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
                        platform::errors::InvalidArgument(
                            "The Input(MasterParam) and Output(MasterParamOut) "
                            "should not be null when "
                            "the attr `multi_precision` is true"));
      master_param = ctx.Input<framework::Tensor>("MasterParam");
      master_param_out = ctx.Output<framework::Tensor>("MasterParamOut");
    }

    param_out->mutable_data<T>(ctx.GetPlace());
    velocity_out->mutable_data<MT>(ctx.GetPlace());
    const MT* master_in_data =
        multi_precision ? master_param->data<MT>() : nullptr;
    MT* master_out_data =
        multi_precision ? master_param_out->mutable_data<MT>(ctx.GetPlace())
                        : nullptr;

    auto grad = ctx.Input<framework::Tensor>("Grad");

    platform::ForRange<DeviceContext> for_range(
        static_cast<const DeviceContext&>(ctx.device_context()),
        param->numel());

    auto param_dims = param->dims();
    auto grad_dims = grad->dims();

447 448
    PADDLE_ENFORCE_EQ(param_dims.size(),
                      2,
449 450 451
                      platform::errors::InvalidArgument(
                          "The Param's rank of sparse_momentum_op"
                          " must be 2 now."));
452 453
    PADDLE_ENFORCE_EQ(grad_dims.size(),
                      2,
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
                      platform::errors::InvalidArgument(
                          "The Grad's rank of sparse_momentum_op"
                          " must be 2 now."));

    Tensor sorted_index, grad_index, sort_value;
    auto sorted_index_ptr =
        sorted_index.mutable_data<IndexT>({num_index}, ctx.GetPlace());
    auto grad_index_ptr =
        grad_index.mutable_data<IndexT>({num_index}, ctx.GetPlace());

    if (platform::is_gpu_place(ctx.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
      auto sort_value_ptr =
          sort_value.mutable_data<IndexT>({num_index}, ctx.GetPlace());

      platform::ForRange<DeviceContext> for_range_index(
          static_cast<const DeviceContext&>(ctx.device_context()), num_index);
      RangeFunctor<IndexT> range_functor(sort_value_ptr);
      for_range_index(range_functor);

      size_t temp_storage_bytes = 0;
475
      PADDLE_ENFORCE_GPU_SUCCESS(
476
          (cub::DeviceRadixSort::SortPairs<IndexT, IndexT>(
477 478 479 480 481 482
              nullptr,
              temp_storage_bytes,
              nullptr,
              nullptr,
              nullptr,
              nullptr,
483 484
              static_cast<int>(num_index))));
      auto d_temp_storage = memory::Alloc(ctx.GetPlace(), temp_storage_bytes);
485
      PADDLE_ENFORCE_GPU_SUCCESS(
486
          (cub::DeviceRadixSort::SortPairs<IndexT, IndexT>(
487 488 489 490 491 492 493 494 495
              d_temp_storage->ptr(),
              temp_storage_bytes,
              index->data<IndexT>(),
              sorted_index_ptr,
              sort_value_ptr,
              grad_index_ptr,
              static_cast<int>(num_index),
              0,
              sizeof(IndexT) * 8,
496 497 498 499 500 501 502 503
              ctx.cuda_device_context().stream())));
#endif
    } else if (platform::is_cpu_place(ctx.GetPlace())) {
      std::vector<std::pair<IndexT, IndexT>> vec_tosort;
      auto index_ptr = index->data<IndexT>();
      for (IndexT i = 0; i < num_index; i++) {
        vec_tosort.push_back({index_ptr[i], i});
      }
504 505
      std::sort(vec_tosort.begin(),
                vec_tosort.end(),
506 507 508 509 510 511 512 513 514 515 516 517 518 519
                [](const std::pair<IndexT, IndexT>& k1,
                   const std::pair<IndexT, IndexT>& k2) {
                  return k1.first < k2.first;
                });
      for (IndexT i = 0; i < num_index; i++) {
        sorted_index_ptr[i] = vec_tosort[i].first;
        grad_index_ptr[i] = vec_tosort[i].second;
      }
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "sparse_momentum %s is not supported.", ctx.GetPlace()));
    }

    IndexMomentumFunctor<T, MT, IndexT, UpdateMethod> functor(
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        param->data<T>(),
        grad->data<T>(),
        velocity->data<MT>(),
        learning_rate->data<MPDType>(),
        master_in_data,
        mu,
        rescale_grad,
        sorted_index_ptr,
        grad_index_ptr,
        num_index,
        axis,
        param_dims[1],
        grad_dims[1],
        regularization_flag,
        regularization_coeff,
        update_method,
536
        param_out->mutable_data<T>(ctx.GetPlace()),
537 538
        velocity_out->mutable_data<MT>(ctx.GetPlace()),
        master_out_data);
539 540 541 542 543 544
    for_range(functor);
  }
};

}  // namespace operators
}  // namespace paddle