test_elementwise_pow_op.py 10.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

Q
Qiao Longfei 已提交
15
import unittest
16

Q
Qiao Longfei 已提交
17
import numpy as np
18
from op_test import OpTest, skip_check_grad_ci
19

20
import paddle
21
import paddle.fluid as fluid
Q
Qiao Longfei 已提交
22 23


24 25 26 27 28 29
def pow_grad(x, y, dout):
    dx = dout * y * np.power(x, (y - 1))
    dy = dout * np.log(x) * np.power(x, y)
    return dx, dy


Q
Qiao Longfei 已提交
30 31 32
class TestElementwisePowOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
33
        self.python_api = paddle.pow
34
        self.prim_op_type = "prim"
Q
Qiao Longfei 已提交
35
        self.inputs = {
36
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
37
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64"),
Q
Qiao Longfei 已提交
38 39 40 41
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
42 43 44 45
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
Q
Qiao Longfei 已提交
46

47
    def test_check_grad_normal(self):
48
        if hasattr(self, 'attrs'):
49 50 51
            self.check_grad(
                ['X', 'Y'], 'Out', check_eager=False, check_prim=True
            )
52
        else:
53 54 55
            self.check_grad(
                ['X', 'Y'], 'Out', check_eager=True, check_prim=True
            )
56

Q
Qiao Longfei 已提交
57

58 59 60 61
class TestElementwisePowOp_ZeroDim1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
62 63 64
        self.enable_cinn = False
        self.prim_op_type = "prim"

65 66 67 68 69 70 71 72 73 74 75
        self.inputs = {
            'X': np.random.uniform(1, 2, []).astype("float64"),
            'Y': np.random.uniform(1, 2, []).astype("float64"),
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_ZeroDim2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
76 77 78
        self.enable_cinn = False
        self.prim_op_type = "prim"

79 80 81 82 83 84 85 86 87 88 89
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
            'Y': np.random.uniform(1, 2, []).astype("float64"),
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_ZeroDim3(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
90 91 92
        self.enable_cinn = False
        self.prim_op_type = "prim"

93 94 95 96 97 98 99
        self.inputs = {
            'X': np.random.uniform(1, 2, []).astype("float64"),
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64"),
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


100 101 102
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
103
        self.python_api = paddle.pow
104 105
        self.prim_op_type = "prim"

106
        self.inputs = {
107
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
108
            'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64"),
109 110 111 112 113 114 115
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
116
        self.python_api = paddle.pow
117 118
        self.prim_op_type = "prim"

119
        self.inputs = {
120
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
121
            'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64"),
122 123 124 125
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


126
@skip_check_grad_ci(
127 128
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
Q
Qiao Longfei 已提交
129 130 131
class TestElementwisePowOp_scalar(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
132
        self.python_api = paddle.pow
133 134
        self.prim_op_type = "prim"

Q
Qiao Longfei 已提交
135
        self.inputs = {
136
            'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
137
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64),
138 139 140 141 142 143 144
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_tensor(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
145
        self.python_api = paddle.pow
146 147 148

        self.prim_op_type = "prim"

149
        self.inputs = {
150
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
151
            'Y': np.random.uniform(1, 3, [100]).astype("float64"),
152 153 154 155 156 157 158
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
159
        self.python_api = paddle.pow
160 161
        self.prim_op_type = "prim"

162
        self.inputs = {
163
            'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
164
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64"),
Q
Qiao Longfei 已提交
165 166 167 168
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


169 170 171
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
172
        self.python_api = paddle.pow
173

174
        self.inputs = {
175
            'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
176
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64"),
177 178 179
        }
        self.attrs = {'axis': 1}
        self.outputs = {
180
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
181 182
        }

183 184 185 186 187 188
    def test_check_grad_normal(self):
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)

189 190 191 192

class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
193
        self.python_api = paddle.pow
194

195
        self.inputs = {
196
            'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
197
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64"),
198 199 200
        }
        self.attrs = {'axis': 0}
        self.outputs = {
201 202 203
            'Out': np.power(
                self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1)
            )
204 205
        }

206 207 208 209 210 211
    def test_check_grad_normal(self):
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)

212 213 214 215

class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
216
        self.python_api = paddle.pow
217

218
        self.inputs = {
219
            'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
220
            'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64"),
221 222 223
        }
        self.attrs = {'axis': 1}
        self.outputs = {
224 225 226
            'Out': np.power(
                self.inputs['X'], self.inputs['Y'].reshape(1, 20, 5, 1)
            )
227 228
        }

229 230 231 232 233 234
    def test_check_grad_normal(self):
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)

235

236 237 238
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
239
        self.python_api = paddle.pow
240 241
        self.prim_op_type = "prim"

242
        self.inputs = {
243
            'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
244
            'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64"),
245 246 247 248
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


249 250 251
class TestElementwisePowOpInt(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
252
        self.python_api = paddle.pow
253

254 255 256 257
        self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
258 259 260 261
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
262 263 264 265 266 267 268


class TestElementwisePowGradOpInt(unittest.TestCase):
    def setUp(self):
        self.x = np.asarray([1, 3, 6])
        self.y = np.asarray([1, 1, 1])
        self.res = self.x**self.y
269

270 271 272
        # dout = 1
        self.grad_res = np.asarray([1, 1, 1])
        # dx = dout * y * pow(x, y-1)
273 274 275
        self.grad_x = (
            self.grad_res * self.y * (self.x ** (self.y - 1)).astype("int")
        )
276
        # dy = dout * log(x) * pow(x, y)
277 278 279
        self.grad_y = (
            self.grad_res * np.log(self.x) * (self.x**self.y)
        ).astype("int")
280 281 282 283 284 285 286 287 288 289 290 291

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.dygraph.guard(place):
                x = fluid.dygraph.to_variable(self.x, zero_copy=False)
                y = fluid.dygraph.to_variable(self.y, zero_copy=False)
                x.stop_gradient = False
                y.stop_gradient = False
                res = x**y
292
                res.retain_grads()
293
                res.backward()
294 295 296
                np.testing.assert_array_equal(res.gradient(), self.grad_res)
                np.testing.assert_array_equal(x.gradient(), self.grad_x)
                np.testing.assert_array_equal(y.gradient(), self.grad_y)
297 298


299 300 301 302
class TestElementwisePowOpFP16(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
303 304
        self.prim_op_type = "prim"

305 306
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype("float16"),
307
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float16"),
308 309 310 311 312 313 314 315 316 317
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)

    def test_check_grad(self):
318 319 320 321 322 323 324
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=pow_grad(
                self.inputs['X'], self.inputs['Y'], 1 / self.inputs['X'].size
            ),
            check_eager=True,
325
            check_prim=True,
326
        )
327 328


Q
Qiao Longfei 已提交
329 330
if __name__ == '__main__':
    unittest.main()