tensor_py.h 24.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

L
Luo Tao 已提交
17
#include <Python.h>
W
wopeizl 已提交
18 19
#include <algorithm>
#include <memory>
Q
qijun 已提交
20
#include <string>
C
chengduoZH 已提交
21
#include <tuple>
22
#include <utility>
C
chengduoZH 已提交
23
#include <vector>
24
#include "paddle/fluid/framework/data_type.h"
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
W
wopeizl 已提交
27 28
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
29
#include "paddle/fluid/platform/bfloat16.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/device_context.h"
31
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
32 33
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
34

W
wopeizl 已提交
35 36
namespace py = pybind11;

37 38 39 40 41 42 43
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
44
constexpr int NPY_UINT16_ = 4;
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
61
  static constexpr auto name = _("float16");
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76 77
// Note: Since bfloat16 is not a builtin type in C++ and in numpy,
// we register paddle::platform::bfloat16 as numpy.uint16.
template <>
struct npy_format_descriptor<paddle::platform::bfloat16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_UINT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "H" represents UINT16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "H";
  }
78
  static constexpr auto name = _("bfloat16");
79 80
};

81 82 83
}  // namespace detail
}  // namespace pybind11

84
namespace paddle {
85
namespace pybind {
86

87 88
namespace details {

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
template <typename T>
class PYBIND11_HIDDEN NumpyAllocation : public memory::Allocation {
 public:
  explicit NumpyAllocation(const py::array &arr)
      : Allocation(const_cast<void *>(arr.data()), sizeof(T) * (arr.size()),
                   paddle::platform::CPUPlace()),
        arr_(arr.ptr()) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~NumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject *arr_;
};

114 115 116 117 118 119 120 121 122 123 124 125
template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
126
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::bfloat16);
127 128 129 130
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
L
Leo Chen 已提交
131
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int16_t);
132 133
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);
L
Leo Chen 已提交
134
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
135 136 137 138 139 140 141

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
142 143 144
    } else if (std::is_same<T, platform::bfloat16>::value) {                \
      /* NumPy character code of uint16 due to no support for bfloat16 */   \
      return "H";                                                           \
145 146
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
147 148 149 150 151
      PADDLE_ENFORCE_EQ(                                                    \
          kIsValidDType, true,                                              \
          platform::errors::Unimplemented(                                  \
              "This type [%s] of tensor cannot be expose to Python",        \
              typeid(T).name()));                                           \
152 153 154 155 156 157
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
158 159
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", framework::DataTypeToString(type)));
160 161 162 163
}

}  // namespace details

164
template <typename T>
165
T TensorGetElement(const framework::Tensor &self, size_t offset) {
166 167 168
  PADDLE_ENFORCE_LT(offset, self.numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
Q
qingqing01 已提交
169
  T b = static_cast<T>(0);
170
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
171
    b = self.data<T>()[offset];
172 173 174 175 176 177 178
  } else if (platform::is_xpu_place(self.place())) {
#ifdef PADDLE_WITH_XPU
    const T *a = self.data<T>();
    auto p = BOOST_GET_CONST(platform::XPUPlace, self.place());
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self.place())) {
Q
qingqing01 已提交
179 180
#ifdef PADDLE_WITH_CUDA
    const T *a = self.data<T>();
181
    auto p = BOOST_GET_CONST(platform::CUDAPlace, self.place());
Q
qingqing01 已提交
182 183 184
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
#endif
185
  }
Q
qingqing01 已提交
186
  return b;
187 188 189
}

template <typename T>
190
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
191 192 193
  PADDLE_ENFORCE_LT(offset, self->numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
Q
qingqing01 已提交
194
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
195
    self->mutable_data<T>(self->place())[offset] = elem;
196 197 198 199 200 201 202
  } else if (platform::is_xpu_place(self->place())) {
#ifdef PADDLE_WITH_XPU
    auto p = BOOST_GET_CONST(platform::XPUPlace, self->place());
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self->place())) {
Q
qingqing01 已提交
203
#ifdef PADDLE_WITH_CUDA
204
    auto p = BOOST_GET_CONST(platform::CUDAPlace, self->place());
Q
qingqing01 已提交
205 206 207 208
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
#endif
209
  }
210 211
}

212 213 214
template <typename T, typename P>
void SetTensorFromPyArrayT(
    framework::Tensor *self,
215
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
216
    const P &place, bool zero_copy) {
217 218 219 220 221 222 223 224
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
  self->Resize(framework::make_ddim(dims));

  if (paddle::platform::is_cpu_place(place)) {
225 226 227 228 229 230 231 232
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
      self->ResetHolderWithType(holder, type);
    } else {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
    }
233 234 235 236 237 238 239 240 241 242
  } else if (paddle::platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    auto dst = self->mutable_data<T>(place);
    xpu_memcpy(dst, array.data(), array.nbytes(),
               XPUMemcpyKind::XPU_HOST_TO_DEVICE);
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
#endif
243 244
  } else {
#ifdef PADDLE_WITH_CUDA
245
    auto dst = self->mutable_data<T>(place);
246 247 248
    if (paddle::platform::is_cuda_pinned_place(place)) {
      std::memcpy(dst, array.data(), array.nbytes());
    } else if (paddle::platform::is_gpu_place(place)) {
249 250
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      cudaMemcpyHostToDevice);
251
    } else {
252 253 254
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible place type: Tensor.set() supports "
          "CPUPlace, CUDAPlace "
255
          "and CUDAPinnedPlace, but got %s!",
256
          place));
257 258
    }
#else
259
    PADDLE_THROW(platform::errors::PermissionDenied(
260
        "Cannot use CUDAPlace or CUDAPinnedPlace in CPU only version, "
261
        "Please recompile or reinstall Paddle with CUDA support."));
262 263 264 265 266
#endif
  }
}

template <typename P>
267
void SetTensorFromPyArray(framework::Tensor *self, const py::object &obj,
268
                          const P &place, bool zero_copy) {
269
  auto array = obj.cast<py::array>();
270
  if (py::isinstance<py::array_t<float>>(array)) {
271
    SetTensorFromPyArrayT<float, P>(self, array, place, zero_copy);
272
  } else if (py::isinstance<py::array_t<int>>(array)) {
273
    SetTensorFromPyArrayT<int, P>(self, array, place, zero_copy);
274
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
275
    SetTensorFromPyArrayT<int64_t, P>(self, array, place, zero_copy);
276
  } else if (py::isinstance<py::array_t<double>>(array)) {
277
    SetTensorFromPyArrayT<double, P>(self, array, place, zero_copy);
278
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
279
    SetTensorFromPyArrayT<int8_t, P>(self, array, place, zero_copy);
L
Leo Chen 已提交
280 281
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetTensorFromPyArrayT<int16_t, P>(self, array, place, zero_copy);
282
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
283
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place, zero_copy);
284
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
285 286
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place,
                                                        zero_copy);
287
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
288 289 290 291
    // since there is still no support for bfloat16 in NumPy,
    // uint16 is used for casting bfloat16
    SetTensorFromPyArrayT<paddle::platform::bfloat16, P>(self, array, place,
                                                         zero_copy);
292
  } else if (py::isinstance<py::array_t<bool>>(array)) {
293
    SetTensorFromPyArrayT<bool, P>(self, array, place, zero_copy);
294
  } else {
295 296
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning,
297
    PADDLE_THROW(platform::errors::InvalidArgument(
298 299 300 301
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64, uint8 or uint16, "
        "please check your input or input array data type."));
302 303 304
  }
}

W
wopeizl 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
template <typename T, size_t D>
void _sliceCompute(const framework::Tensor *in, framework::Tensor *out,
                   const platform::CPUDeviceContext &ctx,
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto place = in->place();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
  out_t.device(eigen_place) = in_t.slice(offsets, extents);
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
                    const platform::CPUDeviceContext &ctx, int64_t axis) {
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
      auto in_stride = framework::stride_numel(in.dims());
      auto out_stride = framework::stride_numel(out->dims());
      paddle::operators::StridedNumelCopyWithAxis<T>(
          ctx, axis, out->data<T>() + output_offset, out_stride, in.data<T>(),
          in_stride, in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

L
Leo Chen 已提交
360 361 362
inline void _getSliceinfo(const framework::Tensor &self, py::object obj,
                          const int64_t dim, int64_t *pstart, int64_t *pstop,
                          int64_t *pstep, int64_t *pslicelength) {
W
wopeizl 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
  if (dim < 0 || dim >= srcDDim.size()) {
    throw py::index_error();
  }
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
      throw py::index_error();
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
    if (std::abs(start) >= srcDDim[dim]) {
      throw py::index_error();
    }
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
    throw py::index_error();
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
401 402
    output->mutable_data(BOOST_GET_CONST(platform::CPUPlace, place),
                         self.type());
403 404 405 406 407
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    output->mutable_data(BOOST_GET_CONST(platform::XPUPlace, place),
                         self.type());
#endif
W
wopeizl 已提交
408
  } else {
409
#ifdef PADDLE_WITH_CUDA
W
wopeizl 已提交
410
    if (platform::is_cuda_pinned_place(place)) {
411
      output->mutable_data(BOOST_GET_CONST(platform::CUDAPinnedPlace, place),
W
wopeizl 已提交
412 413
                           self.type());
    } else if ((platform::is_gpu_place(place))) {
414 415
      output->mutable_data(BOOST_GET_CONST(platform::CUDAPlace, place),
                           self.type());
W
wopeizl 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    }
#endif
  }
  return output;
}

template <typename T>
void _sliceDapper(const framework::Tensor *in, framework::Tensor *out,
                  const platform::CPUDeviceContext &ctx,
                  const std::vector<int> &axes, const std::vector<int> &starts,
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
456 457
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The dim size should be 1 to 9, current is %d", size));
W
wopeizl 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
                                        const platform::CPUDeviceContext &ctx,
                                        py::object obj, int dim, int64_t start,
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
                                          py::object obj, int dim) {
  platform::CPUDeviceContext ctx;
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
                                       py::object obj, int dim) {
  auto src_type = self.type();
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
505 506
    case framework::proto::VarType::BF16:
      return _sliceAndConcat<paddle::platform::bfloat16>(self, obj, dim);
W
wopeizl 已提交
507 508 509 510
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
L
Leo Chen 已提交
511 512 513 514
    case framework::proto::VarType::INT8:
      return _sliceAndConcat<int8_t>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<int16_t>(self, obj, dim);
W
wopeizl 已提交
515 516 517 518 519 520 521
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
L
Leo Chen 已提交
522
      return _sliceAndConcat<uint8_t>(self, obj, dim);
W
wopeizl 已提交
523
    default:
524 525 526
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Not support tensor type: %s",
          framework::DataTypeToString(src_type)));
W
wopeizl 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

566 567
inline py::array TensorToPyArray(const framework::Tensor &tensor,
                                 bool need_deep_copy = false) {
Q
qingqing01 已提交
568 569 570
  if (!tensor.IsInitialized()) {
    return py::array();
  }
571
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
572
  bool is_xpu_tensor = platform::is_xpu_place(tensor.place());
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
  const auto &tensor_dims = tensor.dims();
  auto tensor_dtype = tensor.type();
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = (size_t)tensor_dims[i];
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

  const void *tensor_buf_ptr = tensor.data<void>();

  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(tensor.type());

591
  if (!is_gpu_tensor && !is_xpu_tensor) {
592
    if (!need_deep_copy) {
593 594 595
      auto base = py::cast(std::move(tensor));
      return py::array(py::dtype(py_dtype_str.c_str()), py_dims, py_strides,
                       const_cast<void *>(tensor_buf_ptr), base);
596 597
    } else {
      py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
598 599 600 601 602 603 604 605 606 607
      PADDLE_ENFORCE_EQ(
          py_arr.writeable(), true,
          platform::errors::InvalidArgument(
              "PyArray is not writable, in which case memory leak "
              "or double free would occur"));
      PADDLE_ENFORCE_EQ(
          py_arr.owndata(), true,
          platform::errors::InvalidArgument(
              "PyArray does not own data, in which case  memory leak "
              "or double free would occur"));
608 609 610 611 612 613
      platform::CPUPlace place;
      size_t copy_bytes = sizeof_dtype * numel;
      paddle::memory::Copy(place, py_arr.mutable_data(), place, tensor_buf_ptr,
                           copy_bytes);
      return py_arr;
    }
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
  } else if (is_xpu_tensor) {
#ifdef PADDLE_WITH_XPU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
    auto p = BOOST_GET_CONST(platform::XPUPlace, tensor.place());
    paddle::memory::Copy(platform::CPUPlace(), py_arr.mutable_data(), p,
                         tensor_buf_ptr, copy_bytes);
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
#endif
  } else if (is_gpu_tensor) {
638
#ifdef PADDLE_WITH_CUDA
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
    paddle::platform::GpuMemcpySync(py_arr.mutable_data(), tensor_buf_ptr,
                                    copy_bytes, cudaMemcpyDeviceToHost);
    return py_arr;
654
#else
655 656 657
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CUDAPlace in CPU only version, "
        "Please recompile or reinstall Paddle with CUDA support."));
658
#endif
659 660 661
  }
  PADDLE_THROW(platform::errors::Unimplemented("Place is not supported"));
  return py::array();
662 663
}

664 665
}  // namespace pybind
}  // namespace paddle