test_ones_like.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
19
from paddle import _C_ops
20 21
from paddle import ones_like
from paddle.fluid import core, Program, program_guard
22
from paddle.fluid.framework import convert_np_dtype_to_dtype_
23 24 25 26 27


class TestOnesLikeAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
28
            x = paddle.fluid.data('x', [3, 4])
29 30 31 32 33 34 35 36 37
            self.assertRaises(TypeError, ones_like, x, 'int8')


class TestOnesLikeAPI(unittest.TestCase):
    def test_api(self):
        shape = [3, 4]
        startup_program = Program()
        train_program = Program()
        with program_guard(train_program, startup_program):
38
            x = paddle.fluid.data('X', shape)
39 40 41

            # 'bool', 'float32', 'float64', 'int32', 'int64'
            out1 = ones_like(x)
42
            out2 = ones_like(x, np.bool_)
43 44 45 46
            out3 = ones_like(x, 'float64')
            out4 = ones_like(x, 'int32')
            out5 = ones_like(x, 'int64')

47 48 49 50 51
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
52
        exe = fluid.Executor(place)
53 54 55 56 57
        outs = exe.run(
            train_program,
            feed={'X': np.ones(shape).astype('float32')},
            fetch_list=[out1, out2, out3, out4, out5],
        )
58 59

        for i, dtype in enumerate(
60 61
            [np.float32, np.bool_, np.float64, np.int32, np.int64]
        ):
62 63 64 65 66 67 68
            self.assertEqual(outs[i].dtype, dtype)
            self.assertEqual((outs[i] == np.ones(shape, dtype)).all(), True)


class TestOnesLikeImpeartive(unittest.TestCase):
    def test_out(self):
        shape = [3, 4]
69 70 71 72 73
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
74
        paddle.disable_static(place)
75
        x = paddle.to_tensor(np.ones(shape))
76
        for dtype in [np.bool_, np.float32, np.float64, np.int32, np.int64]:
77
            out = ones_like(x, dtype)
78 79
            self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True)

80 81 82 83 84 85
        out = paddle.tensor.ones_like(x)
        self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True)

        out = paddle.tensor.creation.ones_like(x)
        self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True)
        paddle.enable_static()
86 87


88 89 90
class TestOnesAPI(unittest.TestCase):
    def test_api(self):
        shape = [3, 4]
91 92 93 94 95
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
96 97 98
        paddle.disable_static(place)

        for dtype in [np.float32, np.float64, np.int32, np.int64]:
99
            out = _C_ops.ones(shape, convert_np_dtype_to_dtype_(dtype), place)
100 101 102 103 104
            self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True)

        paddle.enable_static()


105 106
if __name__ == "__main__":
    unittest.main()