mkldnn_helper.h 15.6 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
J
Jacek Czaja 已提交
17
#include <iostream>
P
Physher 已提交
18
#include <memory>
J
Jacek Czaja 已提交
19
#include <sstream>
G
gongweibao 已提交
20
#include <string>
21
#include <utility>
22
#include <vector>
23

24
#include "dnnl.hpp"  // NOLINT
25
#include "paddle/fluid/framework/operator.h"
M
mozga-intel 已提交
26
#include "paddle/fluid/platform/place.h"
C
chenjian 已提交
27
#include "paddle/fluid/platform/profiler/event_tracing.h"
T
tensor-tang 已提交
28
namespace paddle {
29
#ifdef PADDLE_WITH_MKLDNN
30
using MKLDNNMemoryFormat = dnnl::memory::format_tag;
31
#endif
T
tensor-tang 已提交
32 33
namespace platform {

34 35 36 37 38 39
using MKLDNNStream = dnnl::stream;
using MKLDNNEngine = dnnl::engine;
using MKLDNNMemory = dnnl::memory;
using MKLDNNMemoryDescriptor = dnnl::memory::desc;
using MKLDNNPrimitive = dnnl::primitive;
using MKLDNNPrimitiveDesc = dnnl::handle<dnnl_primitive_desc_t>;
T
tensor-tang 已提交
40

41 42 43 44 45
typedef std::unique_ptr<MKLDNNStream> MKLDNNStreamPtr;
typedef std::unique_ptr<MKLDNNEngine> MKLDNNEnginePtr;
typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
T
tensor-tang 已提交
46

47 48 49 50 51
template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

K
Krzysztof Binias 已提交
52 53 54 55 56
template <typename Type>
void* to_void_reinterpret_cast(const Type* t) {
  return reinterpret_cast<void*>(const_cast<Type*>(t));
}

57 58 59 60 61 62 63 64 65
template <class Type>
using tf_desc = typename Type::desc;

template <class Type>
using tf_pd = typename Type::primitive_desc;

template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
                                                    Args&&... args) {
66
  auto desc = tf_desc<Type>(dnnl::prop_kind::forward, (args)...);
67 68 69 70 71
  auto pd = new tf_pd<Type>(desc, e);
  return std::shared_ptr<tf_pd<Type>>(pd);
}

template <typename Type, typename Engine, typename Primitive, typename... Args>
72 73
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e,
                                   const Primitive& p,
74 75 76 77 78
                                   Args&&... args) {
  auto desc = tf_desc<Type>(args...);
  return tf_pd<Type>(desc, e, p);
}

79
inline void MatchShapeToLayout(phi::DenseTensor* tensor_in,
80 81
                               framework::DataLayout from,
                               framework::DataLayout to) {
J
Jacek Czaja 已提交
82 83 84 85 86 87
  auto print_dims = [](const std::vector<int>& dims) {
    std::ostringstream oss;

    if (!dims.empty()) {
      oss << "[";
      // Convert all but the last element to avoid a trailing ","
88 89
      std::copy(
          dims.begin(), dims.end() - 1, std::ostream_iterator<int>(oss, ","));
J
Jacek Czaja 已提交
90 91 92 93 94 95 96 97

      // Now add the last element with no delimiter
      oss << dims.back() << "]";
    }

    return oss.str();
  };

98 99 100 101 102 103 104 105 106
  // In these data layouts, channel dimension is either on 2nd position: nChw or
  // at last nhwC, so for dim==2 these layouts are the same and nothing should
  // be done. Similarly for dim==1 when you have just one possible combination.
  if (tensor_in->dims().size() < 3) {
    VLOG(3) << "Keeping kMKLDNN/kNHWC/kNDHWC output_shape"
            << print_dims(phi::vectorize<int>(tensor_in->dims()));
    return;
  }

107 108
  switch (from) {
    case framework::DataLayout::kMKLDNN:
109 110
      if ((to == framework::DataLayout::kNHWC) ||
          (to == framework::DataLayout::kNDHWC)) {
111
        auto dims = phi::vectorize<int>(tensor_in->dims());
112
        std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
113
        tensor_in->Resize(phi::make_ddim(dims));
114
        VLOG(3) << "Rotating Shape from: kMKLDNN to: kNHWC/kNDHWC output_shape"
J
Jacek Czaja 已提交
115
                << print_dims(dims);
116 117 118
      }
      break;
    case framework::DataLayout::kNHWC:
119
    case framework::DataLayout::kNDHWC:
120
      if (to == framework::DataLayout::kMKLDNN) {
121
        auto dims = phi::vectorize<int>(tensor_in->dims());
122
        std::rotate(dims.begin() + 1, dims.end() - 1, dims.end());
123
        tensor_in->Resize(phi::make_ddim(dims));
124
        VLOG(3) << "Rotating Shape from: kNHWC/kNDHWC to: kMKLDNN output_shape"
J
Jacek Czaja 已提交
125
                << print_dims(dims);
126 127 128 129 130 131 132
      }
      break;
    default:
      break;
  }
}

133 134 135 136 137
struct mkldnn_dummy_primitive {
  struct primitive_desc {};
  struct desc {};
};

138 139 140 141
inline dnnl::memory::desc MKLDNNMemDesc(const std::vector<int64_t>& dims,
                                        dnnl::memory::data_type data_type,
                                        MKLDNNMemoryFormat format) {
  return dnnl::memory::desc({dims}, data_type, format);
142 143
}

144 145
inline void ClearMKLDNNCache(const platform::Place& place,
                             void* ptr = nullptr) {
146 147 148 149 150
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
151
    dev_ctx->ResetBlobMap(ptr);
152 153 154
  }
}

155 156 157 158 159 160 161 162 163 164
inline void DontClearMKLDNNCache(const platform::Place& place) {
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
    dev_ctx->BlockNextCacheClearing();
  }
}

165
template <typename Type>
166 167
dnnl::memory::data_type MKLDNNGetDataType() {
  return dnnl::memory::data_type::undef;
168 169 170
}

template <>
171 172
inline dnnl::memory::data_type MKLDNNGetDataType<float>() {
  return dnnl::memory::data_type::f32;
173 174
}
template <>
175 176
inline dnnl::memory::data_type MKLDNNGetDataType<int32_t>() {
  return dnnl::memory::data_type::s32;
177
}
P
Physher 已提交
178
template <>
179 180
inline dnnl::memory::data_type MKLDNNGetDataType<int8_t>() {
  return dnnl::memory::data_type::s8;
P
Physher 已提交
181 182
}
template <>
183 184
inline dnnl::memory::data_type MKLDNNGetDataType<uint8_t>() {
  return dnnl::memory::data_type::u8;
P
Physher 已提交
185 186
}

187
template <>
188 189
inline dnnl::memory::data_type MKLDNNGetDataType<paddle::platform::bfloat16>() {
  return dnnl::memory::data_type::bf16;
190 191
}

192 193
inline void Reorder(dnnl::memory src,
                    dnnl::memory dst,
194 195
                    const dnnl::engine& engine) {
  auto reorder_prim = dnnl::reorder(src, dst);
196
  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
197
  platform::RecordEvent record_reorder("int_reorder",
C
chenjian 已提交
198
                                       platform::TracerEventType::UserDefined,
199 200
                                       2,
                                       platform::EventRole::kUniqueOp);
A
Adam 已提交
201 202
  reorder_prim.execute(astream, src, dst);
  astream.wait();
M
mozga-intel 已提交
203 204
}

205
inline dnnl::memory::format_tag GetPlainMKLDNNFormat(int tensor_rank) {
206 207
  switch (tensor_rank) {
    case 1:
208
      return dnnl::memory::format_tag::a;
209
    case 2:
210
      return dnnl::memory::format_tag::ab;
211
    case 3:
212
      return dnnl::memory::format_tag::abc;
213
    case 4:
214
      return dnnl::memory::format_tag::abcd;
215
    case 5:
216
      return dnnl::memory::format_tag::abcde;
217
    case 6:
218
      return dnnl::memory::format_tag::abcdef;
219
    case 7:
220
      return dnnl::memory::format_tag::abcdefg;
221
    case 8:
222
      return dnnl::memory::format_tag::abcdefgh;
223
    case 9:
224
      return dnnl::memory::format_tag::abcdefghi;
225 226 227 228 229 230 231 232
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Paddle support tensors with rank in range <1, 9>, but received "
          "tensor with rank: %d",
          tensor_rank));
  }
}

233 234
inline MKLDNNMemoryFormat MKLDNNFormatForSize(size_t dims_size,
                                              MKLDNNMemoryFormat data_format) {
235
  if (dims_size == 1) {
236
    return MKLDNNMemoryFormat::x;
237
  } else if (dims_size == 2) {
238
    return MKLDNNMemoryFormat::nc;
239
  } else if (dims_size == 3) {
240 241 242 243
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::nwc;
244
    }
245
  } else if (dims_size == 4) {
246 247
    if (data_format == MKLDNNMemoryFormat::goihw) {
      return MKLDNNMemoryFormat::oihw;
248
    }
249
  } else if (dims_size == 5) {
250 251
    if (data_format == MKLDNNMemoryFormat::goidhw) {
      return MKLDNNMemoryFormat::oidhw;
252
    }
253 254 255 256
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncdhw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::ndhwc;
257
    }
258
  } else if (dims_size == 6) {
259 260 261
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::abcdef;
    }
262 263 264 265
  }
  return data_format;
}

266
inline MKLDNNMemoryFormat data_format_to_memory_format(
267 268 269
    const std::string& data_format) {
  switch (framework::StringToDataLayout(data_format)) {
    case framework::DataLayout::kNHWC:
270
      return MKLDNNMemoryFormat::nhwc;
271
    case framework::DataLayout::kNCHW:
272
      return MKLDNNMemoryFormat::nchw;
273
    default:
274
      return MKLDNNMemoryFormat::any;
275 276 277
  }
}

278
inline MKLDNNMemoryFormat StringToMKLDNNFormat(std::string* format) {
279 280 281
  std::transform(format->begin(), format->end(), format->begin(), ::tolower);

  if (!format->compare("nchw")) {
282
    return MKLDNNMemoryFormat::nchw;
283
  } else if (!format->compare("nchw16c")) {
284
    return MKLDNNMemoryFormat::nChw16c;
285
  } else if (!format->compare("nchw8c")) {
286
    return MKLDNNMemoryFormat::nChw8c;
287
  } else if (!format->compare("nhwc")) {
288
    return MKLDNNMemoryFormat::nhwc;
289
  } else {
290
    return MKLDNNMemoryFormat::any;
291 292 293
  }
}

A
Adam 已提交
294 295 296 297 298
inline std::string ThreadIDasStr(void) {
  return std::to_string(
      std::hash<std::thread::id>()(std::this_thread::get_id()));
}

299 300 301
template <typename T>
inline void AppendKey(std::string* key, const T& num) {
  key->append(std::to_string(num));
A
Adam 已提交
302 303
}

A
Adam 已提交
304 305
template <>
inline void AppendKey(std::string* key,
306
                      const dnnl::memory::format_tag& format) {
A
Adam 已提交
307 308 309 310 311
  key->append(std::to_string(static_cast<int>(format)));
}

template <>
inline void AppendKey(std::string* key,
312
                      const dnnl::memory::data_type& data_type) {
A
Adam 已提交
313 314 315 316
  key->append(std::to_string(static_cast<int>(data_type)));
}

template <>
317
inline void AppendKey(std::string* key, const dnnl::algorithm& algorithm) {
A
Adam 已提交
318 319 320 321 322
  key->append(std::to_string(static_cast<int>(algorithm)));
}

template <>
inline void AppendKey(std::string* key,
323
                      const dnnl::normalization_flags& flags) {
A
Adam 已提交
324 325 326
  key->append(std::to_string(static_cast<int>(flags)));
}

327 328
inline void AppendKey(std::string* key, const std::string& str) {
  key->append(str);
A
Adam 已提交
329 330
}

331
inline void AppendKey(std::string* key, const char* str) { key->append(str); }
A
Adam 已提交
332

A
Adam 已提交
333 334
template <typename T>
inline void AppendKey(std::string* key, const std::vector<T>& dims) {
335
  for (size_t i = 0; i < dims.size(); i++) {
A
Adam 已提交
336 337 338 339
    AppendKey(key, std::to_string(dims[i]));
  }
}

340 341 342 343
// If MKLDNN build and CPU place then register suffix in DeviceContext
inline void AttachPointerHashToMKLDNNKey(void* ptr,
                                         const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
J
Jacek Czaja 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356
    // Static vars will remember first executor and its thread
    // so both of them need to be processed by the same thread within
    // critical section
    static std::mutex static_vars_barrier;
    static_vars_barrier.lock();
    static auto first_exec = ptr;
    static auto first_thread = ThreadIDasStr();
    static_vars_barrier.unlock();

    if (first_exec != ptr) {
      paddle::platform::MKLDNNDeviceContext::tls().set_key_suffix(
          "E" + std::to_string(reinterpret_cast<uintptr_t>(ptr)));
    }
357 358 359
    // Let's register adress of current executor
    paddle::platform::MKLDNNDeviceContext::tls().set_curr_exec(ptr);

J
Jacek Czaja 已提交
360 361 362 363
    // For first thread
    if (first_thread == ThreadIDasStr()) {
      paddle::platform::MKLDNNDeviceContext::tls().disable_tid_in_key();
    }
364 365 366
  }
}

367
template <typename... ArgTypes>
368 369
inline std::string CreateKey(const platform::MKLDNNDeviceContext& dev_ctx,
                             ArgTypes&&... args) {
370
  std::string key;
371
  key.reserve(64);
372
  using expand_type = int[];
373
  expand_type{0, (AppendKey(&key, std::forward<ArgTypes>(args)), 0)...};
J
Jacek Czaja 已提交
374
  key += paddle::platform::MKLDNNDeviceContext::tls().get_key_suffix();
375 376 377
  return key;
}

378 379
inline std::string ExtendKeyWithThreadInfoIfNeeded(
    const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key) {
J
Jacek Czaja 已提交
380 381
  return (paddle::platform::MKLDNNDeviceContext::tls().is_tid_used_in_key() ==
          true)
382 383 384 385
             ? key + "-t:" + ThreadIDasStr()
             : key;
}

A
Adam 已提交
386 387
inline std::vector<std::vector<int64_t>> ToMkldnnPadding(
    const std::vector<int64_t>& paddings) {
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
  if (paddings.size() == 6) {
    int padding_front = paddings[0];
    int padding_back = paddings[1];
    int padding_top = paddings[2];
    int padding_bottom = paddings[3];
    int padding_left = paddings[4];
    int padding_right = paddings[5];

    return {{padding_front, padding_top, padding_left},
            {padding_back, padding_bottom, padding_right}};
  } else {
    int padding_top = paddings[0];
    int padding_bottom = paddings[1];
    int padding_left = paddings[2];
    int padding_right = paddings[3];

    return {{padding_top, padding_left}, {padding_bottom, padding_right}};
  }
}

408 409 410 411 412 413 414 415 416 417 418 419 420
// The function adjusts the vector of weight dimensions for group convolutions
inline void GetGroupConvWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
                                  const int groups) {
  if (groups > 1) {
    // if (is_conv3d) [o, i, d, h, w]->[g, o/g, i, d, h, w]
    // else [o, i, h, w] -> [g, o/g, i, h, w]
    weights_tz.push_back(0);
    std::rotate(weights_tz.begin(), weights_tz.end() - 1, weights_tz.end());
    weights_tz[0] = groups;
    weights_tz[1] = weights_tz[1] / groups;
  }
}

J
Jacek Czaja 已提交
421
inline void RegisterModelLayout(
422
    std::vector<std::unique_ptr<framework::OperatorBase>>& ops,  // NOLINT
J
Jacek Czaja 已提交
423 424
    const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
425 426 427 428 429 430
    // If there is already registered NHWC then quit this call
    // not to overwrite setting with analysis of internal "while" op block
    if (platform::MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
        framework::DataLayout::kNHWC)
      return;

L
Leo Chen 已提交
431
    VLOG(4) << "RegisterModelLayout for mkldnn";
J
Jacek Czaja 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    auto check_attrib = [](std::unique_ptr<framework::OperatorBase>& op,
                           const std::string& attrib_name) -> bool {
      if (op->HasAttr(attrib_name)) {
        auto data_format = op->Attr<std::string>(attrib_name);
        platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
            data_format.compare("NHWC") == 0 ? framework::DataLayout::kNHWC
                                             : framework::DataLayout::kNCHW);
        return true;
      } else {
        return false;
      }
    };

    for (auto& op : ops) {
      if (check_attrib(op, std::string("data_format"))) {
        return;
      }
      if (check_attrib(op, std::string("data_layout"))) {
        return;
      }
    }
  }
}

456 457 458 459 460
inline bool HasOpINT8DataType(const paddle::framework::OpDesc* op) {
  return (op->GetAttrIfExists<std::string>("mkldnn_data_type") == "int8" ||
          op->GetAttrIfExists<bool>("use_quantizer"));
}

461 462 463 464 465 466 467
inline bool HasOpBFLOAT16DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "bfloat16";
}

inline bool HasOpFLOAT32DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "float32";
}
A
Adam Osewski 已提交
468

A
Adam 已提交
469 470
enum class RNNReorderType { PP_NTC, PP_TNC, NTC_PP, TNC_PP };

A
Adam Osewski 已提交
471 472 473 474 475
template <typename T>
bool constexpr is_int8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

T
tensor-tang 已提交
476 477
}  // namespace platform
}  // namespace paddle