reduce_op.h 10.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

W
whs 已提交
17
#include <vector>
D
Dong Zhihong 已提交
18
#include "glog/logging.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
G
guosheng 已提交
21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
D
Dong Zhihong 已提交
30 31 32
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
33 34 35
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
D
Dong Zhihong 已提交
36

G
guosheng 已提交
37
struct SumFunctor {
Q
QI JUN 已提交
38
  template <typename DeviceContext, typename X, typename Y, typename Dim>
39 40
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->sum(dim);
G
guosheng 已提交
41 42 43 44
  }
};

struct SumGradFunctor {
Q
QI JUN 已提交
45 46
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
47
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
G
guosheng 已提交
48
                  const Dim& dim, int size) {
49
    dx->device(place) = dy->broadcast(dim);
G
guosheng 已提交
50 51 52 53
  }
};

struct MeanFunctor {
Q
QI JUN 已提交
54
  template <typename DeviceContext, typename X, typename Y, typename Dim>
55 56
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->mean(dim);
G
guosheng 已提交
57 58 59 60
  }
};

struct MeanGradFunctor {
Q
QI JUN 已提交
61 62
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
63
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
G
guosheng 已提交
64
                  const Dim& dim, int size) {
65
    dx->device(place) = dy->broadcast(dim) / dx->constant(size);
G
guosheng 已提交
66 67 68 69
  }
};

struct MaxFunctor {
Q
QI JUN 已提交
70
  template <typename DeviceContext, typename X, typename Y, typename Dim>
71 72
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->maximum(dim);
G
guosheng 已提交
73 74 75 76
  }
};

struct MinFunctor {
Q
QI JUN 已提交
77
  template <typename DeviceContext, typename X, typename Y, typename Dim>
78 79
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->minimum(dim);
G
guosheng 已提交
80 81 82 83
  }
};

struct MaxOrMinGradFunctor {
Q
QI JUN 已提交
84 85
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
86
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
G
guosheng 已提交
87
                  const Dim& dim, int size) {
88 89 90
    auto equals = (*x) == y->broadcast(dim);
    auto ones = dx->constant(1);
    auto zeros = dx->constant(0);
91 92
    // If there are multiple minimum or maximum elements, the subgradient of
    // each is the set [0, 1], and we pass gradient to all of them here.
93
    dx->device(place) = dy->broadcast(dim) * equals.select(ones, zeros);
G
guosheng 已提交
94 95 96
  }
};

97 98
struct ProdFunctor {
  template <typename DeviceContext, typename X, typename Y, typename Dim>
99 100
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    y->device(place) = x->prod(dim);
101 102 103 104 105 106
  }
};

struct ProdGradFunctor {
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
107
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
108
                  const Dim& dim, int size) {
109
    dx->device(place) = dy->broadcast(dim) * y->broadcast(dim) * x->inverse();
110 111 112
  }
};

W
whs 已提交
113 114 115 116 117
#define HANDLE_DIM(NDIM, RDIM)          \
  if (ndim == NDIM && rdim == RDIM) {   \
    ReduceCompute<NDIM, RDIM>(context); \
  }

Q
QI JUN 已提交
118
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
119
class ReduceKernel : public framework::OpKernel<T> {
G
guosheng 已提交
120 121
 public:
  void Compute(const framework::ExecutionContext& context) const override {
122 123 124 125 126 127 128 129 130 131 132 133
    bool reduce_all = context.Attr<bool>("reduce_all");
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto* input = context.Input<Tensor>("X");
      auto* output = context.Output<Tensor>("Out");
      output->mutable_data<T>(context.GetPlace());
      auto x = EigenVector<T>::Flatten(*input);
      auto out = EigenScalar<T>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
134
      functor(place, &x, &out, reduce_dim);
135
    } else {
W
whs 已提交
136 137
      int ndim = context.Input<Tensor>("X")->dims().size();
      int rdim = context.Attr<std::vector<int>>("dim").size();
138 139 140 141 142 143 144 145 146 147
      // comments for accelerating compiling temporarily.
      //      HANDLE_DIM(6, 5);
      //      HANDLE_DIM(6, 4);
      //      HANDLE_DIM(6, 3);
      //      HANDLE_DIM(6, 2);
      //      HANDLE_DIM(6, 1);
      //      HANDLE_DIM(5, 4);
      //      HANDLE_DIM(5, 3);
      //      HANDLE_DIM(5, 2);
      //      HANDLE_DIM(5, 1);
W
whs 已提交
148 149 150 151 152 153 154
      HANDLE_DIM(4, 3);
      HANDLE_DIM(4, 2);
      HANDLE_DIM(4, 1);
      HANDLE_DIM(3, 2);
      HANDLE_DIM(3, 1);
      HANDLE_DIM(2, 1);
      HANDLE_DIM(1, 1);
G
guosheng 已提交
155 156 157 158
    }
  }

 private:
W
whs 已提交
159
  template <size_t D, size_t R_D>
G
guosheng 已提交
160 161 162 163 164 165 166
  void ReduceCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");
    output->mutable_data<T>(context.GetPlace());

    auto x = EigenTensor<T, D>::From(*input);
    auto x_rank = static_cast<int>(x.dimensions().size());
W
whs 已提交
167 168 169 170 171 172
    auto dims = context.Attr<std::vector<int>>("dim");
    auto reduce_dim = Eigen::array<int, R_D>();
    for (size_t i = 0; i < dims.size(); ++i) {
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
      reduce_dim[i] = dims[i];
    }
G
guosheng 已提交
173
    // construct the squeezed output tensor
G
guosheng 已提交
174
    bool keep_dim = context.Attr<bool>("keep_dim");
W
whs 已提交
175
    DDim out_dims = output->dims();
G
guosheng 已提交
176
    if (keep_dim && x_rank > 1) {
W
whs 已提交
177 178 179 180 181 182 183 184 185
      const int kDelFlag = -2;
      auto dims_vector = vectorize(out_dims);
      for (size_t i = 0; i < dims.size(); ++i) {
        dims_vector[dims[i]] = kDelFlag;
      }
      dims_vector.erase(
          remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
          dims_vector.end());
      out_dims = framework::make_ddim(dims_vector);
G
guosheng 已提交
186
    }
Q
QI JUN 已提交
187 188
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
G
guosheng 已提交
189
    Functor functor;
D
Dong Zhihong 已提交
190 191 192

    if (D == 1) {
      auto out = EigenScalar<T>::From(*output);
193
      functor(place, &x, &out, reduce_dim);
D
Dong Zhihong 已提交
194
    } else {
W
whs 已提交
195
      auto out = EigenTensor<T, (D - R_D)>::From(*output, out_dims);
196
      functor(place, &x, &out, reduce_dim);
D
Dong Zhihong 已提交
197
    }
G
guosheng 已提交
198 199 200
  }
};

Q
QI JUN 已提交
201
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
202
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
203 204
 public:
  void Compute(const framework::ExecutionContext& context) const override {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    bool reduce_all = context.Attr<bool>("reduce_all");
    if (reduce_all) {
      auto* input0 = context.Input<Tensor>("X");
      auto* input1 = context.Input<Tensor>("Out");
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      auto* output = context.Output<Tensor>(framework::GradVarName("X"));
      output->mutable_data<T>(context.GetPlace());
      auto x = EigenVector<T>::Flatten(*input0);
      auto x_reduce = EigenVector<T>::From(*input1);
      auto x_reduce_grad = EigenVector<T>::From(*input2);
      auto x_grad = EigenVector<T>::Flatten(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto broadcast_dim =
          Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
      Functor functor;
221
      functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
              broadcast_dim[0]);
    } else {
      int rank = context.Input<Tensor>("X")->dims().size();
      switch (rank) {
        case 1:
          ReduceGradCompute<1>(context);
          break;
        case 2:
          ReduceGradCompute<2>(context);
          break;
        case 3:
          ReduceGradCompute<3>(context);
          break;
        case 4:
          ReduceGradCompute<4>(context);
          break;
        case 5:
          ReduceGradCompute<5>(context);
          break;
        case 6:
          ReduceGradCompute<6>(context);
          break;
      }
G
guosheng 已提交
245 246 247 248 249
    }
  }

 private:
  template <size_t D>
250
  void ReduceGradCompute(const framework::ExecutionContext& context) const {
G
guosheng 已提交
251 252 253 254 255
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
    auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));

256 257 258 259
    output->mutable_data<T>(context.GetPlace());
    auto x = EigenTensor<T, D>::From(*input0);
    auto x_grad = EigenTensor<T, D>::From(*output);
    auto x_rank = static_cast<int>(x.dimensions().size());
W
whs 已提交
260 261 262
    auto dims = context.Attr<std::vector<int>>("dim");
    auto x_dims = input0->dims();
    auto reduced_dims_v = vectorize(x_dims);
D
Dong Zhihong 已提交
263 264
    Eigen::array<int, D> broadcast_dim;
    for (size_t i = 0; i < D; ++i) broadcast_dim[i] = 1;
W
whs 已提交
265 266 267 268 269 270 271 272 273 274 275 276

    int broad_cats_times = 1;
    for (size_t i = 0; i < dims.size(); ++i) {
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
      reduced_dims_v[dims[i]] = 1;
      broadcast_dim[dims[i]] = x_dims[dims[i]];
      broad_cats_times *= x_dims[dims[i]];
    }
    auto reduced_dims = framework::make_ddim(reduced_dims_v);
    auto x_reduce = EigenTensor<T, D>::From(*input1, reduced_dims);
    auto x_reduce_grad = EigenTensor<T, D>::From(*input2, reduced_dims);

Q
QI JUN 已提交
277 278
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
W
whs 已提交
279

280
    Functor functor;
281
    functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
W
whs 已提交
282
            broad_cats_times);
G
guosheng 已提交
283 284 285 286 287
  }
};

}  // namespace operators
}  // namespace paddle
288 289 290 291 292

#define FOR_EACH_KERNEL_FUNCTOR(__macro)                \
  __macro(reduce_sum, SumFunctor, SumGradFunctor);      \
  __macro(reduce_mean, MeanFunctor, MeanGradFunctor);   \
  __macro(reduce_max, MaxFunctor, MaxOrMinGradFunctor); \
293 294
  __macro(reduce_min, MinFunctor, MaxOrMinGradFunctor); \
  __macro(reduce_prod, ProdFunctor, ProdGradFunctor);