Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8b3bf28c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8b3bf28c
编写于
9月 21, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine reduce_op and follow comments
上级
630273d4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
103 addition
and
114 deletion
+103
-114
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+7
-0
paddle/operators/reduce_op.cc
paddle/operators/reduce_op.cc
+65
-82
paddle/operators/reduce_op.h
paddle/operators/reduce_op.h
+31
-32
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
8b3bf28c
...
...
@@ -61,6 +61,13 @@ function(op_library TARGET)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(sigmoid);
\n
"
)
endif
()
# reduce_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"reduce_op"
)
set
(
pybind_flag 1
)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(reduce_sum);
\n
"
)
endif
()
# pybind USE_NO_KERNEL_OP
file
(
READ
${
TARGET
}
.cc TARGET_CONTENT
)
...
...
paddle/operators/reduce_op.cc
浏览文件 @
8b3bf28c
...
...
@@ -18,7 +18,7 @@ namespace paddle {
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
DDim
;
using
framework
::
LoDTensor
;
class
ReduceOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
@@ -26,18 +26,19 @@ class ReduceOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) of ReduceOp should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out"
),
"Output(Out) of ReduceOp should not be null."
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_LE
(
x_rank
,
6
,
"Tensors with rank at most 6 are supported"
);
PADDLE_ENFORCE_LE
(
x_rank
,
6
,
"Tensors with rank at most 6 are supported
.
"
);
int
dim
=
ctx
.
Attr
<
int
>
(
"dim"
);
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
PADDLE_ENFORCE_LT
(
dim
,
x_rank
,
"The dim should be in the range [-rank(input), rank(input))"
);
PADDLE_ENFORCE_GE
(
ctx
.
Attr
<
int
>
(
"keep_dim"
),
0
,
"keep_dim must be 0 or 1"
);
PADDLE_ENFORCE_LE
(
ctx
.
Attr
<
int
>
(
"keep_dim"
),
1
,
"keep_dim must be 0 or 1"
);
bool
keep_dim
=
ctx
.
Attr
<
int
>
(
"keep_dim"
)
==
1
;
"The dim should be in the range [-rank(input), rank(input))."
);
bool
keep_dim
=
ctx
.
Attr
<
bool
>
(
"keep_dim"
);
auto
dims_vector
=
vectorize
(
x_dims
);
if
(
keep_dim
||
x_rank
==
1
)
{
dims_vector
[
dim
]
=
1
;
...
...
@@ -45,7 +46,7 @@ class ReduceOp : public framework::OperatorWithKernel {
dims_vector
.
erase
(
dims_vector
.
begin
()
+
dim
);
}
auto
out_dims
=
framework
::
make_ddim
(
dims_vector
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
out_dims
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
out_dims
);
}
};
...
...
@@ -55,119 +56,101 @@ class ReduceGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null
.
"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
"Input(Out@GRAD) should not be null
.
"
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_LE
(
x_rank
,
6
,
"Tensors with rank at most 6 are supported"
);
PADDLE_ENFORCE_LE
(
x_rank
,
6
,
"Tensors with rank at most 6 are supported
.
"
);
int
dim
=
ctx
.
Attr
<
int
>
(
"dim"
);
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
PADDLE_ENFORCE_LT
(
dim
,
x_rank
,
"The dim should be in the range [-rank(input), rank(input))"
);
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
"The dim should be in the range [-rank(input), rank(input))."
);
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
}
};
class
Reduce
Sum
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
ReduceOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
ReduceSumOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
ReduceOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddComment
(
R"DOC(
ReduceMean operator computes the sum of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input))"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"keep_dim"
,
"(int, default 0) "
"Must be 0 or 1. If 1, retain the reduced dimension with length 1."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default false) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
comment_
=
R"DOC(
{ReduceOP} operator computes the {reduce} of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC"
;
AddComment
(
comment_
);
}
protected:
std
::
string
comment_
;
void
Replace
(
std
::
string
&
src
,
std
::
string
from
,
std
::
string
to
)
{
std
::
size_t
len_from
=
std
::
strlen
(
from
.
c_str
());
std
::
size_t
len_to
=
std
::
strlen
(
to
.
c_str
());
for
(
std
::
size_t
pos
=
src
.
find
(
from
);
pos
!=
std
::
string
::
npos
;
pos
=
src
.
find
(
from
,
pos
+
len_to
))
{
src
.
replace
(
pos
,
len_from
,
to
);
}
}
void
SetComment
(
std
::
string
name
,
std
::
string
op
)
{
Replace
(
comment_
,
"{ReduceOP}"
,
name
);
Replace
(
comment_
,
"{reduce}"
,
op
);
}
};
class
ReduceMeanOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
ReduceSumOpMaker
:
public
ReduceOpMaker
{
public:
ReduceSumOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
ReduceOpMaker
(
proto
,
op_checker
)
{
SetComment
(
"ReduceSum"
,
"sum"
);
AddComment
(
comment_
);
}
};
class
ReduceMeanOpMaker
:
public
ReduceOpMaker
{
public:
ReduceMeanOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddComment
(
R"DOC(
ReduceMean operator computes the mean of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input))"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"keep_dim"
,
"(int, default 0) "
"Must be 0 or 1. If 1, retain the reduced dimension with length 1."
)
.
SetDefault
(
0
);
:
ReduceOpMaker
(
proto
,
op_checker
)
{
SetComment
(
"ReduceMean"
,
"mean"
);
AddComment
(
comment_
);
}
};
class
ReduceMaxOpMaker
:
public
framework
::
OpProtoAndChecker
Maker
{
class
ReduceMaxOpMaker
:
public
ReduceOp
Maker
{
public:
ReduceMaxOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddComment
(
R"DOC(
ReduceMax operator computes the maximum of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input))"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"keep_dim"
,
"(int, default 0) "
"Must be 0 or 1. If 1, retain the reduced dimension with length 1."
)
.
SetDefault
(
0
);
:
ReduceOpMaker
(
proto
,
op_checker
)
{
SetComment
(
"ReduceMax"
,
"max"
);
AddComment
(
comment_
);
}
};
class
ReduceMinOpMaker
:
public
framework
::
OpProtoAndChecker
Maker
{
class
ReduceMinOpMaker
:
public
ReduceOp
Maker
{
public:
ReduceMinOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddComment
(
R"DOC(
ReduceMin operator computes the minimum of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input))"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"keep_dim"
,
"(int, default 0) "
"Must be 0 or 1. If 1, retain the reduced dimension with length 1."
)
.
SetDefault
(
0
);
:
ReduceOpMaker
(
proto
,
op_checker
)
{
SetComment
(
"ReduceMin"
,
"min"
);
AddComment
(
comment_
);
}
};
...
...
paddle/operators/reduce_op.h
浏览文件 @
8b3bf28c
...
...
@@ -27,61 +27,60 @@ template <typename T, size_t D, int MajorType = Eigen::RowMajor,
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
struct
SumFunctor
{
template
<
typename
Place
,
typename
In
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In
&
in
,
Out
&
out
,
const
Dim
&
dim
)
{
out
.
device
(
place
)
=
in
.
sum
(
dim
);
template
<
typename
Place
,
typename
X
,
typename
Y
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
X
&
x
,
Y
&
y
,
const
Dim
&
dim
)
{
y
.
device
(
place
)
=
x
.
sum
(
dim
);
}
};
struct
SumGradFunctor
{
template
<
typename
Place
,
typename
In
,
typename
In_Const
,
typename
Out
,
template
<
typename
Place
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In_Const
&
in
,
In
&
in_grad
,
Out
&
out
,
Out
&
out_grad
,
const
Dim
&
dim
,
int
size
)
{
in_grad
.
device
(
place
)
=
out_grad
.
broadcast
(
dim
);
void
operator
()(
const
Place
&
place
,
X
&
x
,
Y
&
y
,
DX
&
dx
,
DY
&
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
.
device
(
place
)
=
dy
.
broadcast
(
dim
);
}
};
struct
MeanFunctor
{
template
<
typename
Place
,
typename
In
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In
&
in
,
Out
&
out
,
const
Dim
&
dim
)
{
out
.
device
(
place
)
=
in
.
mean
(
dim
);
template
<
typename
Place
,
typename
X
,
typename
Y
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
X
&
x
,
Y
&
y
,
const
Dim
&
dim
)
{
y
.
device
(
place
)
=
x
.
mean
(
dim
);
}
};
struct
MeanGradFunctor
{
template
<
typename
Place
,
typename
In
,
typename
In_Const
,
typename
Out
,
template
<
typename
Place
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In_Const
&
in
,
In
&
in_grad
,
Out
&
out
,
Out
&
out_grad
,
const
Dim
&
dim
,
int
size
)
{
in_grad
.
device
(
place
)
=
out_grad
.
broadcast
(
dim
)
/
in_grad
.
constant
(
size
);
void
operator
()(
const
Place
&
place
,
X
&
x
,
Y
&
y
,
DX
&
dx
,
DY
&
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
.
device
(
place
)
=
dy
.
broadcast
(
dim
)
/
dx
.
constant
(
size
);
}
};
struct
MaxFunctor
{
template
<
typename
Place
,
typename
In
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In
&
in
,
Out
&
out
,
const
Dim
&
dim
)
{
out
.
device
(
place
)
=
in
.
maximum
(
dim
);
template
<
typename
Place
,
typename
X
,
typename
Y
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
X
&
x
,
Y
&
y
,
const
Dim
&
dim
)
{
y
.
device
(
place
)
=
x
.
maximum
(
dim
);
}
};
struct
MinFunctor
{
template
<
typename
Place
,
typename
In
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In
&
in
,
Out
&
out
,
const
Dim
&
dim
)
{
out
.
device
(
place
)
=
in
.
minimum
(
dim
);
template
<
typename
Place
,
typename
X
,
typename
Y
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
X
&
x
,
Y
&
y
,
const
Dim
&
dim
)
{
y
.
device
(
place
)
=
x
.
minimum
(
dim
);
}
};
struct
MaxOrMinGradFunctor
{
template
<
typename
Place
,
typename
In
,
typename
In_Const
,
typename
Out
,
template
<
typename
Place
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In_Const
&
in
,
In
&
in_grad
,
Out
&
out
,
Out
&
out_grad
,
const
Dim
&
dim
,
int
size
)
{
auto
equals
=
in
==
out
.
broadcast
(
dim
);
auto
ones
=
in_grad
.
constant
(
1
);
auto
zeros
=
in_grad
.
constant
(
0
);
in_grad
.
device
(
place
)
=
out_grad
.
broadcast
(
dim
)
*
equals
.
select
(
ones
,
zeros
);
void
operator
()(
const
Place
&
place
,
X
&
x
,
Y
&
y
,
DX
&
dx
,
DY
&
dy
,
const
Dim
&
dim
,
int
size
)
{
auto
equals
=
x
==
y
.
broadcast
(
dim
);
auto
ones
=
dx
.
constant
(
1
);
auto
zeros
=
dx
.
constant
(
0
);
dx
.
device
(
place
)
=
dy
.
broadcast
(
dim
)
*
equals
.
select
(
ones
,
zeros
);
}
};
...
...
@@ -125,7 +124,7 @@ class ReduceKernel : public framework::OpKernel {
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
auto
reduce_dim
=
Eigen
::
array
<
int
,
1
>
({{
dim
}});
// construct the squeezed output tensor
bool
keep_dim
=
context
.
Attr
<
int
>
(
"keep_dim"
)
==
1
;
bool
keep_dim
=
context
.
Attr
<
bool
>
(
"keep_dim"
)
;
DDim
dims
=
output
->
dims
();
auto
dims_vector
=
vectorize
(
dims
);
if
(
keep_dim
&&
x_rank
>
1
)
{
...
...
@@ -191,7 +190,7 @@ class ReduceGradKernel : public framework::OpKernel {
braodcast_dim
[
dim
]
=
input0
->
dims
()[
dim
];
auto
&
place
=
context
.
GetEigenDevice
<
Place
>
();
Functor
functor
;
functor
(
place
,
x
,
x_
grad
,
x_reduce
,
x_reduce_grad
,
braodcast_dim
,
functor
(
place
,
x
,
x_
reduce
,
x_grad
,
x_reduce_grad
,
braodcast_dim
,
braodcast_dim
[
dim
]);
}
}
...
...
@@ -235,8 +234,8 @@ class ReduceGradEigenFreeKernel : public framework::OpKernel {
out_offset
=
inner_count
*
i
+
j
;
for
(
int
k
=
0
;
k
<
mid_count
;
++
k
)
{
x_offset
=
(
inner_count
*
mid_count
)
*
i
+
inner_count
*
k
+
j
;
functor
(
x_data
+
x_offset
,
x_grad_data
+
x
_offset
,
out_data
+
out
_offset
,
out_grad_data
+
out_offset
,
functor
(
x_data
+
x_offset
,
out_data
+
out
_offset
,
x_grad_data
+
x
_offset
,
out_grad_data
+
out_offset
,
mid_count
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录