parameter_server_runtime.py 22.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import warnings

import paddle.fluid as fluid
from paddle.fluid import core
20 21 22 23
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

from .runtime_base import RuntimeBase


class ParameterServerRuntime(RuntimeBase):
    def __init__(self):
        super(ParameterServerRuntime, self).__init__()
        self._communicator = None

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
        self.origin_main_program = context["origin_main_program"]
        self.origin_startup_program = context["origin_startup_program"]
        self.async_strategy = self._get_distributed_strategy()
        self.compiled_strategy = self.build_compiled_startegy()

    def _get_distributed_strategy(self):
        strategy = None

        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

        dist_strategy = self.context["valid_strategy"]
        k_steps = dist_strategy.a_sync_configs["k_steps"]

        if not dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if dist_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

        return strategy

    def build_compiled_startegy(self):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy

        compiled_config = CompileTimeStrategy(
            self.origin_main_program, self.origin_main_program,
            self.async_strategy, self.role_maker)
        return compiled_config

    def _load_sparse_params(self, dirname, varnames):
        from paddle.fluid.communicator import LargeScaleKV
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts

        scale_kv = LargeScaleKV()
        for varname in varnames:
            origin_varname, _, _ = _get_varname_parts(varname)
            sparse_dir = os.path.join(dirname, origin_varname, varname)
            scale_kv.load(varname, sparse_dir)

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts

            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

            if origin_varname == "learning_rate_0":
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                            var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    def _init_worker(self):
        def sync_strategy_envs():
            kwargs = {}
107 108 109
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            return kwargs

        def geo_strategy_envs():
            from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames

            def get_sparse_attrs():
                opt_init_map = {}
                opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
                opt_init_map["fill_constant"] = ["value"]
                opt_init_map["uniform_random"] = ["seed", "min", "max"]
                opt_init_map[
                    "truncated_gaussian_random"] = ["seed", "mean", "std"]

                dist_varnames = get_sparse_tablenames(self.origin_main_program,
                                                      True)
                sparse_varnames = get_sparse_tablenames(
                    self.origin_main_program, False)

                if len(dist_varnames) != 0:
                    raise ValueError(
                        "GeoStrategy can not support large scale embeding now, please use fluid.layers.embedding"
                    )

                init_attrs = []
                for value_name in sparse_varnames:
                    value_var = self.origin_main_program.global_block().vars[
                        value_name]
                    value_attr = [
                        value_name,
                        ",".join([str(dim) for dim in value_var.shape])
                    ]
                    for op in self.origin_startup_program.global_block().ops:
                        if op.type in opt_init_map.keys(
                        ) and value_name == op.output("Out")[0]:
                            init_attr = [op.type]
                            for attr in opt_init_map[op.type]:
                                init_attr.append(str(op.attr(attr)))
                            value_attr.append("&".join(init_attr))
                            init_attrs.append(":".join(value_attr))
                            break
                return "#".join(init_attrs)

            kwargs = {}
153
            kwargs["trainers"] = self.role_maker._worker_num()
154 155 156
            kwargs["sparse_attrs"] = get_sparse_attrs()
            return kwargs

157
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_lr_ops, _has_global_step
158 159 160 161 162 163

        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            SyncStrategy, GeoStrategy

        trainer_config = self.async_strategy.get_trainer_runtime_config()

164 165 166
        lrs = _has_global_step(_get_lr_ops(self.origin_main_program))

        if lrs:
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            kwargs = {"need_global_step": "1"}
        else:
            kwargs = {"need_global_step": "0"}

        if isinstance(self.async_strategy, GeoStrategy):
            geo_kwargs = geo_strategy_envs()
            kwargs.update(geo_kwargs)
        if isinstance(self.async_strategy, SyncStrategy):
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

        kwargs = kwargs if kwargs else None

        send_ctx = self.compiled_strategy.get_communicator_send_context()

        if self.compiled_strategy.is_geo_mode():
            recv_ctx = self.compiled_strategy.get_communicator_recv_context(
                recv_type=4)
        else:
            recv_ctx = self.compiled_strategy.get_communicator_recv_context(
                recv_type=1)

        from paddle.fluid.communicator import Communicator
        self._communicator = Communicator(
            trainer_config.mode, kwargs,
            trainer_config.get_communicator_flags())
        self._communicator.init_with_ctx(send_ctx, recv_ctx)

        if not self._communicator.is_running():
            self._communicator.start()
        else:
            warnings.warn("communicator has been initialized, skip")

200 201 202 203 204
    def _get_executor(self):
        if self.role_maker._is_heter_worker():
            if self.role_maker._get_heter_worker_device() == "GPU":
                gpu_id = int(os.getenv("FLAGS_selected_gpus", "0"))
                executor = Executor(fluid.CUDAPlace(gpu_id))
C
Chengmo 已提交
205 206 207
            elif self.role_maker._get_heter_worker_device() == "XPU":
                xpu_id = int(os.getenv("FLAGS_selected_xpus", "0"))
                executor = Executor(fluid.XPUPlace(xpu_id))
208 209 210 211 212 213 214
            else:
                raise ValueError("Not Support Device {}".format(
                    self.role_maker._get_heter_worker_device()))
        else:
            executor = fluid.Executor(fluid.CPUPlace())
        return executor

215 216 217 218 219 220 221 222
    def _init_server(self, *args, **kwargs):
        if len(args) > 1:
            raise ValueError("init server can only accept 1 args: `dirname`")
        elif len(args) == 1:
            model_dirname = args[0]
        else:
            model_dirname = None

223 224 225 226
        if self.role_maker._is_heter_worker():
            self._init_worker()

        executor = self._get_executor()
227 228
        executor.run(fluid.default_startup_program())

229 230 231
        if self.role_maker._is_heter_worker():
            return

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        if not model_dirname:
            return

        if not os.path.isdir(model_dirname):
            raise ValueError("There is no directory named '%s'", model_dirname)

        sparse_varnames = self.compiled_strategy.get_sparse_varname_on_ps(True)

        distribtued_varnames = self.compiled_strategy.get_sparse_varname_on_ps(
            False)

        remaining_vars = list(
            filter(
                ParameterServerRuntime.__exclude_vars(sparse_varnames +
                                                      distribtued_varnames),
                fluid.default_main_program().list_vars()))

        fluid.io.load_vars(
            executor,
            main_program=fluid.default_main_program(),
            dirname=model_dirname,
            vars=remaining_vars)

        self._load_sparse_params(
            dirname=model_dirname, varnames=sparse_varnames)

        # todo(tangwei12) load distributed vars
        # self._load_sparse_params(dirname=model_dir, varnames=distribtued_varnames)

    def _run_server(self):
262
        executor = self._get_executor()
263 264 265 266
        executor.run(fluid.default_main_program())

    def _stop_worker(self):
        self._communicator.stop()
267
        executor = self._get_executor()
268
        executor.close()
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

    def _get_optimizer_status(self, op, param_name):
        supported_opts = [
            "sgd", "adam", "adagrad", "adamax", "momentum", "lars_momentum",
            "rmsprop", "decayed_adagrad", "ftrl"
        ]

        reshaped_val_map = {}
        reshaped_val_map["sgd"] = []
        reshaped_val_map["adam"] = ["moment1_0", "moment2_0"]
        reshaped_val_map["adagrad"] = ["moment_0"]
        reshaped_val_map["adamax"] = ["moment_0", "inf_norm_0"]
        reshaped_val_map["momentum"] = ["velocity_0"]
        reshaped_val_map["lars_momentum"] = ["velocity_0"]
        reshaped_val_map[
            "rmsprop"] = ["momentum_0", "mean_square_0", "mean_grad_0"]
        reshaped_val_map["decayed_adagrad"] = ["moment_0"]
        reshaped_val_map["ftrl"] = ["squared_0", "linear_0"]

        orishaped_val_map = {}
        orishaped_val_map["adam"] = ["beta1_pow_acc_0", "beta2_pow_acc_0"]
        orishaped_val_map["adamax"] = ["beta1_pow_acc_0"]

        if op not in supported_opts:
            raise ValueError(
                "fleet can not support optimizer: {}, only this can be supported: {}".
                format(op, supported_opts))

        reshaped_names = [
            param_name + "_" + val for val in reshaped_val_map[op]
        ]

        if op not in orishaped_val_map:
            origin_names = []
        else:
            origin_names = [
                param_name + "_" + val for val in orishaped_val_map[op]
            ]
        return reshaped_names, origin_names

    def _get_optimizer_op(self, param_name):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops

        opts = _get_optimize_ops(self.origin_main_program)
        for op in opts:
            if "Param" in op.input_names and \
                            "LearningRate" in op.input_names and op.input("Param")[0] == param_name:
                return op

    def _save_dense_params(self, executor, dirname, context, main_program):
        self._communicator.recv()

        prog = Program()
        block = prog.global_block()
        local_vars = []

        for name, var_ctx in context.items():
            if len(var_ctx.origin_varnames()) != 1:
                raise ValueError("Dense can not support split now.")

            varname = var_ctx.origin_varnames()[0]
            local_vars.append(varname)

            optimizer = self._get_optimizer_op(varname)
            reshaped_varnames, origin_varnames = self._get_optimizer_status(
                optimizer.type, varname)

            for var_name in [varname] + reshaped_varnames + origin_varnames:
                var = self.origin_main_program.global_block().vars[var_name]
                block.append_op(
                    type='recv_save',
                    attrs={
341
                        "trainer_id": self.role_maker._worker_index(),
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
                        "shape": var.shape,
                        "slice_shapes":
                        [",".join([str(i) for i in var.shape])],
                        "slice_varnames": [var.name],
                        "remote_varnames": [var.name],
                        "is_sparse": False,
                        "endpoints": var_ctx.split_endpoints(),
                        "file_path": os.path.join(dirname, var.name)
                    })

        executor.run(prog)
        return local_vars

    def _save_sparse_params(self, executor, dirname, context, main_program):
        prog = Program()
        block = prog.global_block()
        local_vars = []

        for name, var_ctx in context.items():
            if len(var_ctx.origin_varnames()) != 1:
                raise ValueError("Dense can not support split now.")

            varname = var_ctx.origin_varnames()[0]
            local_vars.append(varname)

            optimizer = self._get_optimizer_op(varname)
            reshaped_varnames, origin_varnames = self._get_optimizer_status(
                optimizer.type, varname)

            var = self.origin_main_program.global_block().vars[varname]
            slice_shapes = []
            dims1 = ",".join([str(i) for i in var.shape[1:]])

            for section in var_ctx.sections():
                slice_shapes.append(str(section) + dims1)

            block.append_op(
                type='recv_save',
                attrs={
381
                    "trainer_id": self.role_maker._worker_index(),
382 383 384 385 386 387
                    "shape": var.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": var_ctx.split_varnames(),
                    "remote_varnames": var_ctx.split_varnames(),
                    "is_sparse": True,
                    "endpoints": var_ctx.split_endpoints(),
388 389
                    "pserver_num":
                    len(self.role_maker._get_pserver_endpoints()),
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
                    "file_path": os.path.join(dirname, var.name)
                })

            for reshaped_varname in reshaped_varnames:
                var = self.origin_main_program.global_block().vars[
                    reshaped_varname]

                slice_varnames = []
                remote_varnames = []
                for i in range(len(var_ctx.split_varnames())):
                    slice_varnames.append("{}.block{}".format(reshaped_varname,
                                                              i))
                    remote_varnames.append(reshaped_varname)

                block.append_op(
                    type='recv_save',
                    attrs={
407
                        "trainer_id": self.role_maker._worker_index(),
408 409 410 411 412 413 414
                        "shape": var.shape,
                        "slice_shapes": slice_shapes,
                        "slice_varnames": slice_varnames,
                        "remote_varnames": remote_varnames,
                        "is_sparse": True,
                        "endpoints": var_ctx.split_endpoints(),
                        "pserver_num":
415
                        len(self.role_maker._get_pserver_endpoints()),
416 417 418 419 420 421 422 423 424 425
                        "file_path": os.path.join(dirname, var.name)
                    })

            for origin_varname in origin_varnames:
                var = self.origin_main_program.global_block().vars[
                    origin_varname]

                block.append_op(
                    type='recv_save',
                    attrs={
426
                        "trainer_id": self.role_maker._worker_index(),
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
                        "shape": var.shape,
                        "slice_shapes":
                        [",".join([str(i) for i in var.shape])],
                        "slice_varnames": [origin_varname],
                        "remote_varnames": [origin_varname],
                        "is_sparse": False,
                        "endpoints": var_ctx.split_endpoints()[:1],
                        "file_path": os.path.join(dirname, var.name)
                    })
        executor.run(prog)
        return context.keys()

    def _save_distributed_params(self, executor, dirname, context,
                                 main_program):
        prog = Program()
        block = prog.global_block()

        for name, var_ctx in context.items():
            block.append_op(
                type='checkpoint_notify',
                attrs={
                    "varname": name,
                    "is_slice": True,
                    "slice_varnames": var_ctx.split_varnames(),
                    "remote_varnames": var_ctx.split_varnames(),
                    "endpoints": var_ctx.split_endpoints(),
                    "dirname": dirname
                })

        executor.run(prog)
        return context.keys()

    def _save_distributed_persistables(self, executor, dirname, main_program):
        dense_ctx = self.compiled_strategy.get_communicator_recv_context(
            recv_type=1)

        sparse_ctx = self.compiled_strategy.get_communicator_recv_context(
            recv_type=2)

        distributed_ctx = self.compiled_strategy.get_communicator_recv_context(
            recv_type=3)

        recv_dense_varnames = self._save_dense_params(executor, dirname,
                                                      dense_ctx, main_program)

        recv_sparse_varnames = self._save_sparse_params(
            executor, dirname, sparse_ctx, main_program)

        recv_distributed_varnames = self._save_distributed_params(
            executor, dirname, distributed_ctx, main_program)

        saved_varnames = recv_dense_varnames + list(
            recv_sparse_varnames) + list(recv_distributed_varnames)

        remaining_vars = list(
            filter(
                ParameterServerRuntime.__exclude_vars(saved_varnames),
                main_program.list_vars()))

        fluid.io.save_vars(
            executor,
            main_program=main_program,
            dirname=dirname,
            vars=remaining_vars)

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save_persistables() function, executor must be as Executor type"
            )

        if main_program is None:
            main_program = fluid.default_main_program()

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        self._save_distributed_persistables(executor, dirname, main_program)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save_inference_model() function, executor must be as Executor type"
            )

        if main_program is not None:
            if isinstance(main_program, CompiledProgram):
                raise TypeError(
                    "in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed"
                )
            fluid.io.save_inference_model(dirname, feeded_var_names,
                                          target_vars, executor, main_program,
                                          None, None, export_for_deployment)
        else:
            fluid.io.save_inference_model(dirname, feeded_var_names,
                                          target_vars, executor,
                                          self.origin_main_program, None, None,
                                          export_for_deployment, True)

            model_basename = "__model__"
            model_filename = os.path.join(dirname, model_basename)

            with open(model_filename, "rb") as f:
                program_desc_str = f.read()

            program = Program.parse_from_string(program_desc_str)
            program._copy_dist_param_info_from(fluid.default_main_program())
            self._ps_inference_save_persistables(executor, dirname, program)

    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)