scatter.h 10.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cstring>
17
#include <string>
Z
zchen0211 已提交
18

Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
22
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/place.h"
24
#include "unordered_set"
Z
zchen0211 已提交
25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

/**
32 33 34 35 36 37
  * Return the updated array pointer, use blas or eigen lib to optimize time
 * cost
 */
template <typename T, typename IndexT = int>
typename std::enable_if<std::is_floating_point<T>::value>::type
elementwise_inner_add(const framework::ExecutionContext& ctx,
38 39
                      const T* src_pointer, T* dst_pointer, size_t src_index,
                      IndexT dst_index, size_t slice_size) {
40 41
  auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
  blas.VADD(slice_size, src_pointer + src_index * slice_size,
42 43
            dst_pointer + dst_index * slice_size,
            dst_pointer + dst_index * slice_size);
44 45 46 47 48
}

template <typename T, typename IndexT = int>
typename std::enable_if<!std::is_floating_point<T>::value>::type
elementwise_inner_add(const framework::ExecutionContext& ctx,
49 50 51 52 53 54 55 56 57 58 59
                      const T* src_pointer, T* dst_pointer, size_t src_index,
                      IndexT dst_index, size_t slice_size) {
  using EigenVector = typename framework::EigenTensor<T, 1>::Type;
  using ConstEigenVector = typename framework::EigenTensor<T, 1>::ConstType;

  framework::EigenDim<1>::Type dim;
  dim[0] = slice_size;

  ConstEigenVector eigen_src(src_pointer + src_index * slice_size, dim);
  EigenVector eigen_dst(dst_pointer + dst_index * slice_size, dim);
  eigen_dst += eigen_src;
60
}
61

62 63
/**
 * Return an updated tensor from source tensor, scattered according to index:
Z
zchen0211 已提交
64
 * dst[i] = src[index[i]]
Z
zchen0211 已提交
65
 * input[src]: type-T source Tensor
66
 * input[index]: type-IndexT index Tensor (1-D)
Z
zchen0211 已提交
67 68
 * return: output tensor
 */
69
template <typename T, typename IndexT = int>
70 71
void ScatterAssign(const platform::DeviceContext& ctx, const Tensor& src,
                   const Tensor& index, Tensor* output) {
72 73 74
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(ctx.GetPlace()), true,
      platform::errors::PreconditionNotMet("This kernel only runs on CPU."));
Z
zchen0211 已提交
75
  // check index of shape 1-D
76 77
  if (index.dims().size() == 2) {
    PADDLE_ENFORCE_EQ(index.dims()[1], 1,
78 79 80 81 82
                      platform::errors::InvalidArgument(
                          "index.dims()[1] should be 1 when "
                          "index.dims().size() =2 in scatter_op."
                          "But received value is [%d]",
                          index.dims()[1]));
83 84
  } else {
    PADDLE_ENFORCE_EQ(index.dims().size(), 1,
85 86 87 88
                      platform::errors::InvalidArgument(
                          "index.dims().size() should be 1 or 2 in scatter_op."
                          "But received value is [%d]",
                          index.dims().size()));
89
  }
90
  int64_t index_size = index.dims()[0];
Z
zchen0211 已提交
91

92
  auto src_dims = src.dims();
Z
zchen0211 已提交
93 94
  auto dst_dims = output->dims();

95
  const T* p_src = src.data<T>();
96
  const IndexT* p_index = index.data<IndexT>();
Z
zchen0211 已提交
97 98
  T* p_output = output->data<T>();

Z
zchen0211 已提交
99
  // check src shape and dst shape should match
Z
zchen0211 已提交
100
  for (int i = 1; i < src_dims.size(); i++)
K
Kqnonrime 已提交
101 102 103 104 105 106 107
    PADDLE_ENFORCE_EQ(
        src_dims[i], dst_dims[i],
        platform::errors::InvalidArgument(
            "The dimensions of the source tensor and target tensor should"
            " match, but received source tensor's %d-th dimension is %d,"
            "target tensor's %d-th dimension is %d.",
            i, src_dims[i], i, dst_dims[i]));
Z
zchen0211 已提交
108 109 110

  // slice size
  size_t slice_size = 1;
Z
zchen0211 已提交
111
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
Z
zchen0211 已提交
112

Z
1 api  
zchen0211 已提交
113 114
  const size_t slice_bytes = slice_size * sizeof(T);

Z
Zeng Jinle 已提交
115
  for (int64_t i = 0; i < index_size; ++i) {
116
    IndexT index_ = p_index[i];
117 118 119 120 121 122 123 124 125

    PADDLE_ENFORCE_GE(index_, 0,
                      platform::errors::OutOfRange(
                          "The index is out of bounds, "
                          "please check whether the dimensions of index and "
                          "input meet the requirements. It should "
                          "be greater than or equal to 0, but received [%d]",
                          index_));

Z
1 api  
zchen0211 已提交
126 127
    memcpy(p_output + index_ * slice_size, p_src + i * slice_size, slice_bytes);
  }
Z
zchen0211 已提交
128 129
}

130 131 132
template <typename T, typename IndexT = int>
void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
                      const Tensor& index, Tensor* output) {
133 134 135
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(ctx.device_context().GetPlace()), true,
      platform::errors::PreconditionNotMet("This kernel only runs on CPU."));
136
  // check index of shape 1-D
137 138 139
  PADDLE_ENFORCE_EQ(
      index.dims().size() == 1 ||
          (index.dims().size() == 2 && index.dims()[1] == 1),
S
ShenLiang 已提交
140 141 142 143 144
      true, platform::errors::InvalidArgument(
                "index's shape is error, "
                "expect index'dims shape is 1 or 2 and index.dims[1] is 1"
                "but got index'dims shape is %d",
                index.dims().size()));
145
  int64_t index_size = index.dims()[0];
146 147 148 149 150 151 152

  auto src_dims = src.dims();
  auto dst_dims = output->dims();

  const T* p_src = src.data<T>();
  const IndexT* p_index = index.data<IndexT>();

153
  T* p_output = output->data<T>();
154 155 156

  // check src shape and dst shape should match
  for (int i = 1; i < src_dims.size(); i++)
K
Kqnonrime 已提交
157 158 159 160 161 162 163
    PADDLE_ENFORCE_EQ(
        src_dims[i], dst_dims[i],
        platform::errors::InvalidArgument(
            "The dimensions of the source tensor and target tensor should"
            " match, but received source tensor's %d-th dimension is %d,"
            "target tensor's %d-th dimension is %d.",
            i, src_dims[i], i, dst_dims[i]));
164 165 166 167 168 169 170 171

  // slice size
  size_t slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

  const size_t& slice_bytes = slice_size * sizeof(T);

  // if not in overwrite mode, need to init output data
172
  auto max_index = dst_dims[0];
173 174 175
  for (int64_t i = 0; i < index_size; ++i) {
    const IndexT& index_val = p_index[i];
    PADDLE_ENFORCE_GE(index_val, 0,
176 177 178 179 180
                      platform::errors::OutOfRange(
                          "The index is out of bounds, "
                          "please check whether the dimensions of index and "
                          "input meet the requirements. It should "
                          "be greater than or equal to 0, but received [%d]",
181
                          index_val));
182 183 184 185 186 187 188 189 190
    PADDLE_ENFORCE_LT(index_val, max_index,
                      platform::errors::OutOfRange(
                          "The index is out of bounds, "
                          "please check whether the dimensions of index and "
                          "input meet the requirements. It should "
                          "be less than %d, but received %d",
                          max_index, index_val));
    memset(p_output + slice_size * index_val, 0, slice_bytes);
  }
191

192 193 194
  // if not in overwrite mode, need to init output data
  for (int64_t i = 0; i < index_size; ++i) {
    const IndexT& index_val = p_index[i];
195 196
    elementwise_inner_add<T, IndexT>(ctx, p_src, p_output, i, index_val,
                                     slice_size);
197 198 199
  }
}

S
ShenLiang 已提交
200 201 202 203 204
// The function is only for scatter grad x,
// however update grad use gather
template <typename T, typename IndexT = int>
void CPUScatterGradForX(const platform::DeviceContext& ctx, const Tensor& index,
                        Tensor* output) {
205
  int64_t index_size = index.dims()[0];
S
ShenLiang 已提交
206 207 208 209 210 211
  auto dst_dims = output->dims();
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();
  size_t slice_size = 1;
  for (int i = 1; i < dst_dims.size(); ++i) slice_size *= dst_dims[i];
  const size_t slice_bytes = slice_size * sizeof(T);
212
  for (int64_t i = 0; i < index_size; ++i) {
S
ShenLiang 已提交
213 214 215 216 217
    const IndexT& index_ = p_index[i];
    memset(p_output + slice_size * index_, 0, slice_bytes);
  }
}

218 219 220
template <typename T, typename IndexT = int>
void ScatterNdAdd(const framework::ExecutionContext& ctx, const Tensor& update,
                  const Tensor& index, Tensor* output) {
221 222 223
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(ctx.device_context().GetPlace()), true,
      platform::errors::PreconditionNotMet("It should be running on the CPU"));
224 225 226 227 228 229 230 231 232 233

  // update.shape = index.shape[:-1] + output.shape[index.shape[-1]:]
  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();

  auto output_dims = output->dims();
  auto output_dims_size = output_dims.size();

  const T* p_update = update.data<T>();
  const IndexT* p_index = index.data<IndexT>();
234
  T* p_output = output->data<T>();
235 236 237 238 239 240 241 242 243 244 245 246 247

  // final dim
  int64_t end_size = index_dims[index_dims_size - 1];
  // remain dim
  auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
  int64_t remain_numel = framework::product(remain_ddim);
  // slice size
  int64_t slice_size = 1;
  for (int64_t i = end_size; i < output_dims_size; ++i) {
    slice_size *= output_dims[i];
  }

  for (int64_t i = 0; i < remain_numel; ++i) {
248
    IndexT index_val = 0;
249 250 251
    IndexT temp = 1;
    for (int64_t j = end_size - 1; j >= 0; --j) {
      IndexT index_value = p_index[i * end_size + j];
252 253 254 255 256 257 258 259 260
      PADDLE_ENFORCE_EQ(
          (index_value >= 0 && index_value < output_dims[j]), true,
          platform::errors::OutOfRange(
              "The index is out of bounds, "
              "please check whether the dimensions of index and "
              "input meet the requirements. It should "
              "be less than [%d] and greater or equal to 0, but received [%d]",
              output_dims[j], index_value));

261
      index_val += (index_value * temp);
262 263
      temp *= output_dims[j];
    }
264 265
    elementwise_inner_add<T, IndexT>(ctx, p_update, p_output, i, index_val,
                                     slice_size);
266 267 268
  }
}

Z
zchen0211 已提交
269 270
}  // namespace operators
}  // namespace paddle