scatter.h 8.8 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cstring>
17
#include <string>
Z
zchen0211 已提交
18

Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
22
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/place.h"
24
#include "unordered_set"
Z
zchen0211 已提交
25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

/**
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  * Return the updated array pointer, use blas or eigen lib to optimize time
 * cost
 */
template <typename T, typename IndexT = int>
typename std::enable_if<std::is_floating_point<T>::value>::type
elementwise_inner_add(const framework::ExecutionContext& ctx,
                      const T* src_pointer, const T* dist_pointer,
                      T* result_dist_pointer, const framework::Tensor& src,
                      framework::Tensor* dist, const int& src_index,
                      const IndexT& dist_index, const int& slice_size,
                      const size_t& slice_bytes) {
  auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);

  blas.VADD(slice_size, src_pointer + src_index * slice_size,
            dist_pointer + dist_index * slice_size,
            result_dist_pointer + dist_index * slice_size);
}

template <typename T, typename IndexT = int>
typename std::enable_if<!std::is_floating_point<T>::value>::type
elementwise_inner_add(const framework::ExecutionContext& ctx,
                      const T* src_pointer, const T* dist_pointer,
                      T* result_dist_pointer, const framework::Tensor& src,
                      framework::Tensor* dist, const int& src_index,
                      const IndexT& dist_index, const int& slice_size,
                      const size_t& slice_bytes) {
  auto src_slice = src.Slice(src_index, src_index + 1);
  auto dist_slice = dist->Slice(dist_index, dist_index + 1);

  auto eigen_src = framework::EigenVector<T>::Flatten(src_slice);
  auto eigen_dist = framework::EigenVector<T>::Flatten(dist_slice);

  eigen_dist += eigen_src;
}
/**
 * Return an updated tensor from source tensor, scattered according to index:
Z
zchen0211 已提交
68
 * dst[i] = src[index[i]]
Z
zchen0211 已提交
69
 * input[src]: type-T source Tensor
70
 * input[index]: type-IndexT index Tensor (1-D)
Z
zchen0211 已提交
71 72
 * return: output tensor
 */
73
template <typename T, typename IndexT = int>
74 75
void ScatterAssign(const platform::DeviceContext& ctx, const Tensor& src,
                   const Tensor& index, Tensor* output) {
76 77 78
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(ctx.GetPlace()), true,
      platform::errors::PreconditionNotMet("This kernel only runs on CPU."));
Z
zchen0211 已提交
79
  // check index of shape 1-D
80 81
  if (index.dims().size() == 2) {
    PADDLE_ENFORCE_EQ(index.dims()[1], 1,
82 83 84 85 86
                      platform::errors::InvalidArgument(
                          "index.dims()[1] should be 1 when "
                          "index.dims().size() =2 in scatter_op."
                          "But received value is [%d]",
                          index.dims()[1]));
87 88
  } else {
    PADDLE_ENFORCE_EQ(index.dims().size(), 1,
89 90 91 92
                      platform::errors::InvalidArgument(
                          "index.dims().size() should be 1 or 2 in scatter_op."
                          "But received value is [%d]",
                          index.dims().size()));
93
  }
94
  int index_size = index.dims()[0];
Z
zchen0211 已提交
95

96
  auto src_dims = src.dims();
Z
zchen0211 已提交
97 98
  auto dst_dims = output->dims();

99
  const T* p_src = src.data<T>();
100
  const IndexT* p_index = index.data<IndexT>();
Z
zchen0211 已提交
101 102
  T* p_output = output->data<T>();

Z
zchen0211 已提交
103
  // check src shape and dst shape should match
Z
zchen0211 已提交
104
  for (int i = 1; i < src_dims.size(); i++)
105 106 107
    PADDLE_ENFORCE_EQ(src_dims[i], dst_dims[i],
                      platform::errors::InvalidArgument(
                          "src shape and dst shape should match"));
Z
zchen0211 已提交
108 109 110

  // slice size
  size_t slice_size = 1;
Z
zchen0211 已提交
111
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
Z
zchen0211 已提交
112

Z
1 api  
zchen0211 已提交
113 114 115
  const size_t slice_bytes = slice_size * sizeof(T);

  for (int i = 0; i < index_size; ++i) {
116
    IndexT index_ = p_index[i];
Z
1 api  
zchen0211 已提交
117 118
    memcpy(p_output + index_ * slice_size, p_src + i * slice_size, slice_bytes);
  }
Z
zchen0211 已提交
119 120
}

121 122 123
template <typename T, typename IndexT = int>
void ScatterAssignAdd(const framework::ExecutionContext& ctx, const Tensor& src,
                      const Tensor& index, Tensor* output) {
124 125 126
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(ctx.device_context().GetPlace()), true,
      platform::errors::PreconditionNotMet("This kernel only runs on CPU."));
127
  // check index of shape 1-D
128 129 130
  PADDLE_ENFORCE_EQ(
      index.dims().size() == 1 ||
          (index.dims().size() == 2 && index.dims()[1] == 1),
S
ShenLiang 已提交
131 132 133 134 135
      true, platform::errors::InvalidArgument(
                "index's shape is error, "
                "expect index'dims shape is 1 or 2 and index.dims[1] is 1"
                "but got index'dims shape is %d",
                index.dims().size()));
136 137 138 139 140 141 142 143 144 145 146 147 148
  int index_size = index.dims()[0];

  auto src_dims = src.dims();
  auto dst_dims = output->dims();

  const T* p_src = src.data<T>();
  const IndexT* p_index = index.data<IndexT>();

  const T* p_output = output->data<T>();
  T* result_p_output = output->data<T>();

  // check src shape and dst shape should match
  for (int i = 1; i < src_dims.size(); i++)
149 150 151
    PADDLE_ENFORCE_EQ(src_dims[i], dst_dims[i],
                      platform::errors::InvalidArgument(
                          "src shape and dst shape should match"));
152 153 154 155 156 157 158 159 160 161 162 163 164

  // slice size
  size_t slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

  const size_t& slice_bytes = slice_size * sizeof(T);

  // if not in overwrite mode, need to init output data
  for (int i = 0; i < index_size; ++i) {
    const IndexT& index_ = p_index[i];
    memset(result_p_output + slice_size * index_, 0, slice_bytes);
  }

165
  // if not in overwrite mode, need to init output data
166 167 168 169 170 171 172 173
  for (int i = 0; i < index_size; ++i) {
    const IndexT& index_ = p_index[i];
    elementwise_inner_add<T, IndexT>(ctx, p_src, p_output, result_p_output, src,
                                     output, i, index_, slice_size,
                                     slice_bytes);
  }
}

S
ShenLiang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
// The function is only for scatter grad x,
// however update grad use gather
template <typename T, typename IndexT = int>
void CPUScatterGradForX(const platform::DeviceContext& ctx, const Tensor& index,
                        Tensor* output) {
  int index_size = index.dims()[0];
  auto dst_dims = output->dims();
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();
  size_t slice_size = 1;
  for (int i = 1; i < dst_dims.size(); ++i) slice_size *= dst_dims[i];
  const size_t slice_bytes = slice_size * sizeof(T);
  for (int i = 0; i < index_size; ++i) {
    const IndexT& index_ = p_index[i];
    memset(p_output + slice_size * index_, 0, slice_bytes);
  }
}

192 193 194
template <typename T, typename IndexT = int>
void ScatterNdAdd(const framework::ExecutionContext& ctx, const Tensor& update,
                  const Tensor& index, Tensor* output) {
195 196 197
  PADDLE_ENFORCE_EQ(
      platform::is_cpu_place(ctx.device_context().GetPlace()), true,
      platform::errors::PreconditionNotMet("It should be running on the CPU"));
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

  // update.shape = index.shape[:-1] + output.shape[index.shape[-1]:]
  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();

  auto output_dims = output->dims();
  auto output_dims_size = output_dims.size();

  const T* p_update = update.data<T>();
  const IndexT* p_index = index.data<IndexT>();
  T* result_p_output = output->data<T>();
  const T* p_output = output->data<T>();

  // final dim
  int64_t end_size = index_dims[index_dims_size - 1];
  // remain dim
  auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
  int64_t remain_numel = framework::product(remain_ddim);
  // slice size
  int64_t slice_size = 1;
  for (int64_t i = end_size; i < output_dims_size; ++i) {
    slice_size *= output_dims[i];
  }
  const size_t slice_bytes = slice_size * sizeof(T);

  for (int64_t i = 0; i < remain_numel; ++i) {
    IndexT index_ = 0;
    IndexT temp = 1;
    for (int64_t j = end_size - 1; j >= 0; --j) {
      IndexT index_value = p_index[i * end_size + j];
      index_ += (index_value * temp);
      temp *= output_dims[j];
    }
    elementwise_inner_add<T, IndexT>(ctx, p_update, p_output, result_p_output,
                                     update, output, i, index_, slice_size,
                                     slice_bytes);
  }
}

Z
zchen0211 已提交
237 238
}  // namespace operators
}  // namespace paddle