test_imperative_double_grad.py 25.2 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
H
hong 已提交
16
import paddle
17
from paddle.fluid.wrapped_decorator import wrap_decorator
Z
Zeng Jinle 已提交
18
from paddle.vision.models import resnet50, resnet101
19 20 21
import unittest
from unittest import TestCase
import numpy as np
22
import paddle.compat as cpt
W
Weilong Wu 已提交
23
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check
24
import paddle.fluid.core as core
25 26 27


def _dygraph_guard_(func):
28

29
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
30
        if fluid._non_static_mode():
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


47
class TestEagerGrad(TestCase):
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def func_simple_example_eager_grad(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        out = paddle.matmul(x, y)
        dx = fluid.dygraph.grad(out, x)

        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))

        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))

    def test_simple_example_eager_grad(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad()
        self.func_simple_example_eager_grad()

    def func_simple_example_eager_grad_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        dx = fluid.dygraph.grad(out, [x, z], allow_unused=True)
        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))
        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        # x is unused input in the graph
        self.assertEqual(dx[1], None)

    def test_simple_example_eager_grad_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_allow_unused()
        self.func_simple_example_eager_grad_allow_unused()

    def func_simple_example_eager_grad_not_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # allow_unused is false in default
            dx = fluid.dygraph.grad(out, [x, z])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_simple_example_eager_grad_not_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_not_allow_unused()
        self.func_simple_example_eager_grad_not_allow_unused()

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    def func_simple_example_eager_grad_duplicate_input(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate input will arise RuntimeError errors
            dx = fluid.dygraph.grad(out, [x, x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_input(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_input()
        self.func_simple_example_eager_grad_duplicate_input()

    def func_simple_example_eager_grad_duplicate_output(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate output will arise RuntimeError errors
            dx = fluid.dygraph.grad([out, out], [x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_output(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_output()
        self.func_simple_example_eager_grad_duplicate_output()

169

170
class TestDygraphDoubleGrad(TestCase):
171

172 173 174 175 176 177 178 179
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 10]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
Z
Zeng Jinle 已提交
180 181 182 183
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
184
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
185 186 187 188 189 190 191
        return fluid.dygraph.grad(outputs=outputs,
                                  inputs=inputs,
                                  grad_outputs=grad_outputs,
                                  no_grad_vars=no_grad_vars,
                                  retain_graph=retain_graph,
                                  create_graph=create_graph,
                                  allow_unused=allow_unused)
192 193

    @dygraph_guard
194
    def func_exception(self):
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
217 218
            self.grad([random_var(shape)], [random_var(shape)],
                      no_grad_vars=[1])
219 220

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
221
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
222

223 224 225 226 227
    def test_exception(self):
        with _test_eager_guard():
            self.func_exception()
        self.func_exception()

228
    @dygraph_guard
229
    def func_simple_example(self):
230 231 232 233 234
        x = random_var(self.shape)
        x.stop_gradient = False
        y = x + 1

        for create_graph in [False, True]:
235 236 237
            dx, = self.grad([x], [x],
                            create_graph=create_graph,
                            retain_graph=True)
238 239 240 241
            self.assertEqual(dx.shape, x.shape)
            self.assertTrue(np.all(dx.numpy() == 1))
            self.assertNotEqual(dx.stop_gradient, create_graph)

242 243 244
            dx_mul_2, = self.grad([y, x], [x],
                                  create_graph=create_graph,
                                  retain_graph=True)
245 246 247 248
            self.assertEqual(dx_mul_2.shape, x.shape)
            self.assertTrue(np.all(dx_mul_2.numpy() == 2))
            self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)

249 250 251
            none_grad, = self.grad([x], [y],
                                   create_graph=create_graph,
                                   allow_unused=True)
252 253
            self.assertTrue(none_grad is None)

254 255
            grad_with_none_and_not_none, = self.grad([x, y], [y],
                                                     create_graph=create_graph)
256 257 258 259 260
            self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
            self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
            self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
                                create_graph)

261 262 263 264 265
    def test_simple_example(self):
        with _test_eager_guard():
            self.func_simple_example()
        self.func_simple_example()

266
    @dygraph_guard
267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def func_example_no_grad_vars(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

281 282 283
        dx_actual, = self.grad([w_mean], [x],
                               create_graph=True,
                               no_grad_vars=[y2])
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

    def test_example_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_no_grad_vars()
        self.func_example_no_grad_vars()

    @dygraph_guard
    def func_none_one_initial_gradient(self):
300 301 302 303 304 305
        numel = 1
        for s in self.shape:
            numel *= s

        half_numel = int(numel / 2)
        half_x_positive = np.random.uniform(low=1, high=2, size=[half_numel])
306 307 308 309 310
        half_x_negative = np.random.uniform(low=-2,
                                            high=-1,
                                            size=[numel - half_numel])
        x_np = np.array(list(half_x_positive) +
                        list(half_x_negative)).astype('float32')
311 312 313
        np.random.shuffle(x_np)

        x = fluid.dygraph.to_variable(x_np)
314 315
        x.stop_gradient = False

316 317
        alpha = 0.2
        y = fluid.layers.leaky_relu(x, alpha=alpha)
318 319 320 321
        y = y * y
        z = y * y

        x_np = x.numpy()
322 323
        relu_x_np = np.maximum(x_np, alpha * x_np).astype('float32')
        relu_x_grad_np = ((x_np > 0) + (x_np < 0) * alpha).astype('float32')
324 325 326 327
        dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
        dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
                       4).astype('float32')

328 329
        random_grad_y = random_var(y.shape, low=1, high=2)
        random_grad_z = random_var(z.shape, low=1, high=2)
330 331 332 333 334 335 336 337 338
        ones_grad_y = np.ones(y.shape).astype('float32')
        ones_grad_z = np.ones(z.shape).astype('float32')

        original_random_grad_y = random_grad_y.numpy()
        original_random_grad_z = random_grad_z.numpy()

        for grad_y in [random_grad_y]:
            for grad_z in [random_grad_z]:
                for create_graph in [False, True]:
339 340 341 342 343
                    dx_actual, = self.grad(outputs=[y, z],
                                           inputs=[x],
                                           grad_outputs=[grad_y, grad_z],
                                           create_graph=create_graph,
                                           retain_graph=True)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

                    grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
                    )
                    grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
                    )

                    dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
                    self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

                    if grad_y is not None:
                        self.assertTrue(grad_y.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_y.numpy(),
                                           original_random_grad_y))

                    if grad_z is not None:
                        self.assertTrue(grad_z.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_z.numpy(),
                                           original_random_grad_z))

365 366 367 368 369
    def test_none_one_initial_gradient(self):
        with _test_eager_guard():
            self.func_none_one_initial_gradient()
        self.func_none_one_initial_gradient()

370
    @dygraph_guard
371
    def func_example_with_gradient_accumulation_and_create_graph(self):
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=True)
        del w_mean

        self.assertFalse(dx_actual.stop_gradient)

        # Theoritical result based on math calculation
        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

394 395
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward(retain_graph=True)
396

397 398 399 400 401 402 403 404
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 2 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

        for i in range(5):
            loss.backward(retain_graph=True)
405
            x_grad_actual = x.gradient()
406 407 408 409
            x_grad_expected = (
                i + 2) * (2.0 / float(numel) *
                          (x_np + dx_expected *
                           (x_np > 0) * 2 / float(numel))).astype('float32')
410 411
            self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

412 413 414 415 416
    def test_example_with_gradient_accumulation_and_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_create_graph()
        self.func_example_with_gradient_accumulation_and_create_graph()

417
    @dygraph_guard
418
    def func_example_with_gradient_accumulation_and_no_grad_vars(self):
419 420 421 422 423 424 425 426 427 428 429 430 431
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

432 433 434 435
        dx_actual, = self.grad([w_mean], [x],
                               retain_graph=True,
                               create_graph=True,
                               no_grad_vars=[y2])
436 437 438 439 440 441 442 443

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

444 445
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
446

447 448 449 450 451
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 4 / float(numel))).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
452 453 454 455 456

    def test_example_with_gradient_accumulation_and_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_no_grad_vars()
        self.func_example_with_gradient_accumulation_and_no_grad_vars()
457 458

    @dygraph_guard
459
    def func_example_with_gradient_accumulation_and_not_create_graph(self):
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=False)
        del w_mean

        self.assertTrue(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

482 483
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
484

485 486 487
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
        self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))
488 489 490 491 492

    def test_example_with_gradient_accumulation_and_not_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_not_create_graph()
        self.func_example_with_gradient_accumulation_and_not_create_graph()
493 494 495


class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
496

497 498 499 500 501
    def setUp(self):
        self.sort_sum_gradient = True
        self.shape = [5, 10]


H
hong 已提交
502
class TestDygraphDoubleGradVisitedUniq(TestCase):
503

504
    def func_compare(self):
505 506
        value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2,
                                                          5).astype("float32")
H
hong 已提交
507 508

        def model_f(input):
509
            linear = fluid.dygraph.Linear(5, 3, bias_attr=False)
H
hong 已提交
510 511
            for i in range(10):
                if i == 0:
512
                    out = linear(input)
H
hong 已提交
513
                else:
514
                    out = out + linear(input)
H
hong 已提交
515 516
            return out

517 518
        fluid.set_flags({'FLAGS_sort_sum_gradient': True})

H
hong 已提交
519
        with fluid.dygraph.guard():
C
cnn 已提交
520
            paddle.seed(123)
L
Leo Chen 已提交
521
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
522 523 524 525 526
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)

527 528 529 530 531
            dx = fluid.dygraph.grad(outputs=[out],
                                    inputs=[a],
                                    create_graph=False,
                                    only_inputs=True,
                                    allow_unused=False)
H
hong 已提交
532 533 534 535

            grad_1 = dx[0].numpy()

        with fluid.dygraph.guard():
C
cnn 已提交
536
            paddle.seed(123)
L
Leo Chen 已提交
537
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
538 539 540 541
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)
542
            out.backward()
H
hong 已提交
543 544 545

            grad_2 = a.gradient()

546 547
        self.assertTrue(np.array_equal(grad_1, grad_2))

548 549 550 551 552
    def test_compare(self):
        with _test_eager_guard():
            self.func_compare()
        self.func_compare()

553 554

class TestRaiseNoDoubleGradOp(TestCase):
555

556 557 558 559
    def raise_no_grad_op(self):
        with fluid.dygraph.guard():
            x = fluid.layers.ones(shape=[2, 3, 2, 2], dtype='float32')
            x.stop_gradient = False
560
            y = paddle.fluid.layers.group_norm(x, groups=1)
561

562 563 564 565
            dx = fluid.dygraph.grad(outputs=[y],
                                    inputs=[x],
                                    create_graph=True,
                                    retain_graph=True)[0]
566 567 568 569 570

            loss = fluid.layers.reduce_mean(dx)
            loss.backward()

    def test_raise(self):
571
        self.assertRaises(RuntimeError, self.raise_no_grad_op)
H
hong 已提交
572 573


W
Weilong Wu 已提交
574
class TestDoubleGradResNet(TestCase):
575

W
Weilong Wu 已提交
576 577 578 579 580
    def setUp(self):
        paddle.seed(123)
        paddle.framework.random._manual_program_seed(123)
        self.data = np.random.rand(1, 3, 224, 224).astype(np.float32)

Z
Zeng Jinle 已提交
581
    @dygraph_guard
W
Weilong Wu 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    def test_resnet_resnet50(self):
        with _test_eager_guard():
            model = resnet50(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet50(pretrained=False)
        data = paddle.to_tensor(self.data)
Z
Zeng Jinle 已提交
599
        data.stop_gradient = False
W
Weilong Wu 已提交
600
        out = model(data)
Z
Zeng Jinle 已提交
601
        preds = paddle.argmax(out, axis=1)
602 603
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
Z
Zeng Jinle 已提交
604 605 606 607 608 609
        target = paddle.sum(out * label_onehot, axis=1)

        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))

W
Weilong Wu 已提交
610 611
        self.assertTrue(np.array_equal(egr_out, out))
        self.assertTrue(np.array_equal(egr_g_numpy, g_numpy))
Z
Zeng Jinle 已提交
612

W
Weilong Wu 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    @dygraph_guard
    def test_resnet_resnet101(self):
        with _test_eager_guard():
            model = resnet101(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet101(pretrained=False)
        data = paddle.to_tensor(self.data)
        data.stop_gradient = False
        out = model(data)
        preds = paddle.argmax(out, axis=1)
634 635
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
W
Weilong Wu 已提交
636
        target = paddle.sum(out * label_onehot, axis=1)
Z
Zeng Jinle 已提交
637

W
Weilong Wu 已提交
638 639 640
        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))
Z
Zeng Jinle 已提交
641

W
Weilong Wu 已提交
642 643
        self.assertTrue(np.array_equal(egr_out, out))
        self.assertTrue(np.array_equal(egr_g_numpy, g_numpy))
Z
Zeng Jinle 已提交
644 645


646
class TestDoubleGradBasics(TestCase):
647

648 649 650
    def test_matmul(self):
        input_numpy = np.ones([3, 3]) * 2
        with _test_eager_guard():
651 652 653 654 655 656 657 658 659
            x = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            y = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            grad_out = paddle.to_tensor(np.ones([3, 3]),
                                        stop_gradient=False,
                                        dtype='float32')
660 661

            out = paddle.matmul(x, y, False, False)
662 663 664
            new_x_g, new_y_g = paddle.grad([out], [x, y], [grad_out],
                                           retain_graph=True,
                                           create_graph=True)
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
            new_x_g.backward()

            out_ref = np.ones([3, 3]) * 12.0
            self.assertTrue(np.array_equal(out.numpy(), out_ref))

            new_x_g_ref = np.ones([3, 3]) * 6.0
            new_y_g_ref = np.ones([3, 3]) * 6.0
            self.assertTrue(np.array_equal(new_x_g.numpy(), new_x_g_ref))
            self.assertTrue(np.array_equal(new_y_g.numpy(), new_y_g_ref))

            x_grad_ref = np.ones([3, 3]) * 0.0
            self.assertTrue(np.array_equal(x.grad.numpy(), x_grad_ref))

            y_grad_ref = np.ones([3, 3]) * 3.0
            self.assertTrue(np.array_equal(y.grad.numpy(), y_grad_ref))

            grad_out_grad_ref = np.ones([3, 3]) * 6.0
            self.assertTrue(
                np.array_equal(grad_out.grad.numpy(), grad_out_grad_ref))


686 687
if __name__ == '__main__':
    unittest.main()