test_imperative_double_grad.py 19.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
H
hong 已提交
16
import paddle
17
from paddle.fluid.wrapped_decorator import wrap_decorator
Z
Zeng Jinle 已提交
18
from paddle.vision.models import resnet50, resnet101
19 20 21
import unittest
from unittest import TestCase
import numpy as np
22 23 24
import paddle.compat as cpt
from paddle.fluid.framework import _test_eager_guard
import paddle.fluid.core as core
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


def _dygraph_guard_(func):
    def __impl__(*args, **kwargs):
        if fluid.in_dygraph_mode():
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
class TestEagerGrad(TestCase):
    def func_simple_example_eager_grad(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        out = paddle.matmul(x, y)
        dx = fluid.dygraph.grad(out, x)

        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))

        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))

    def test_simple_example_eager_grad(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad()
        self.func_simple_example_eager_grad()

    def func_simple_example_eager_grad_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        dx = fluid.dygraph.grad(out, [x, z], allow_unused=True)
        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))
        self.assertTrue(np.allclose(dx[0].numpy(), expected_dx[0]))
        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        # x is unused input in the graph
        self.assertEqual(dx[1], None)

    def test_simple_example_eager_grad_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_allow_unused()
        self.func_simple_example_eager_grad_allow_unused()

    def func_simple_example_eager_grad_not_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # allow_unused is false in default
            dx = fluid.dygraph.grad(out, [x, z])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_simple_example_eager_grad_not_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_not_allow_unused()
        self.func_simple_example_eager_grad_not_allow_unused()


120 121 122 123 124 125 126 127 128
class TestDygraphDoubleGrad(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 10]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
Z
Zeng Jinle 已提交
129 130 131 132
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
133
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
Z
Zeng Jinle 已提交
134
        return fluid.dygraph.grad(
135 136 137
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
Z
Zeng Jinle 已提交
138 139
            no_grad_vars=no_grad_vars,
            retain_graph=retain_graph,
140
            create_graph=create_graph,
141
            allow_unused=allow_unused)
142 143

    @dygraph_guard
144
    def func_exception(self):
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
167 168
            self.grad(
                [random_var(shape)], [random_var(shape)], no_grad_vars=[1])
169 170

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
171
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
172

173 174 175 176 177
    def test_exception(self):
        with _test_eager_guard():
            self.func_exception()
        self.func_exception()

178
    @dygraph_guard
179
    def func_simple_example(self):
180 181 182 183 184
        x = random_var(self.shape)
        x.stop_gradient = False
        y = x + 1

        for create_graph in [False, True]:
Z
Zeng Jinle 已提交
185 186
            dx, = self.grad(
                [x], [x], create_graph=create_graph, retain_graph=True)
187 188 189 190
            self.assertEqual(dx.shape, x.shape)
            self.assertTrue(np.all(dx.numpy() == 1))
            self.assertNotEqual(dx.stop_gradient, create_graph)

Z
Zeng Jinle 已提交
191 192
            dx_mul_2, = self.grad(
                [y, x], [x], create_graph=create_graph, retain_graph=True)
193 194 195 196
            self.assertEqual(dx_mul_2.shape, x.shape)
            self.assertTrue(np.all(dx_mul_2.numpy() == 2))
            self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)

Z
Zeng Jinle 已提交
197 198
            none_grad, = self.grad(
                [x], [y], create_graph=create_graph, allow_unused=True)
199 200 201 202 203 204 205 206 207
            self.assertTrue(none_grad is None)

            grad_with_none_and_not_none, = self.grad(
                [x, y], [y], create_graph=create_graph)
            self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
            self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
            self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
                                create_graph)

208 209 210 211 212
    def test_simple_example(self):
        with _test_eager_guard():
            self.func_simple_example()
        self.func_simple_example()

213
    @dygraph_guard
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    def func_example_no_grad_vars(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

        dx_actual, = self.grad(
            [w_mean], [x], create_graph=True, no_grad_vars=[y2])

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

    def test_example_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_no_grad_vars()
        self.func_example_no_grad_vars()

    @dygraph_guard
    def func_none_one_initial_gradient(self):
246 247 248 249 250 251 252 253 254 255 256 257 258
        numel = 1
        for s in self.shape:
            numel *= s

        half_numel = int(numel / 2)
        half_x_positive = np.random.uniform(low=1, high=2, size=[half_numel])
        half_x_negative = np.random.uniform(
            low=-2, high=-1, size=[numel - half_numel])
        x_np = np.array(list(half_x_positive) + list(half_x_negative)).astype(
            'float32')
        np.random.shuffle(x_np)

        x = fluid.dygraph.to_variable(x_np)
259 260
        x.stop_gradient = False

261 262
        alpha = 0.2
        y = fluid.layers.leaky_relu(x, alpha=alpha)
263 264 265 266
        y = y * y
        z = y * y

        x_np = x.numpy()
267 268
        relu_x_np = np.maximum(x_np, alpha * x_np).astype('float32')
        relu_x_grad_np = ((x_np > 0) + (x_np < 0) * alpha).astype('float32')
269 270 271 272
        dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
        dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
                       4).astype('float32')

273 274
        random_grad_y = random_var(y.shape, low=1, high=2)
        random_grad_z = random_var(z.shape, low=1, high=2)
275 276 277 278 279 280 281 282 283 284 285 286 287
        ones_grad_y = np.ones(y.shape).astype('float32')
        ones_grad_z = np.ones(z.shape).astype('float32')

        original_random_grad_y = random_grad_y.numpy()
        original_random_grad_z = random_grad_z.numpy()

        for grad_y in [random_grad_y]:
            for grad_z in [random_grad_z]:
                for create_graph in [False, True]:
                    dx_actual, = self.grad(
                        outputs=[y, z],
                        inputs=[x],
                        grad_outputs=[grad_y, grad_z],
Z
Zeng Jinle 已提交
288 289
                        create_graph=create_graph,
                        retain_graph=True)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

                    grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
                    )
                    grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
                    )

                    dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
                    self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

                    if grad_y is not None:
                        self.assertTrue(grad_y.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_y.numpy(),
                                           original_random_grad_y))

                    if grad_z is not None:
                        self.assertTrue(grad_z.stop_gradient)
                        self.assertTrue(
                            np.array_equal(grad_z.numpy(),
                                           original_random_grad_z))

311 312 313 314 315
    def test_none_one_initial_gradient(self):
        with _test_eager_guard():
            self.func_none_one_initial_gradient()
        self.func_none_one_initial_gradient()

316
    @dygraph_guard
317
    def func_example_with_gradient_accumulation_and_create_graph(self):
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=True)
        del w_mean

        self.assertFalse(dx_actual.stop_gradient)

        # Theoritical result based on math calculation
        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

340 341 342 343
        if core._in_eager_mode():
            pass
        else:
            loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
344
            loss.backward(retain_graph=True)
345

346
            x_grad_actual = x.gradient()
347
            x_grad_expected = (2.0 / float(numel) * (
348 349 350 351
                x_np + dx_expected *
                (x_np > 0) * 2 / float(numel))).astype('float32')
            self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

352 353 354 355 356 357 358 359 360 361 362 363 364
            for i in range(5):
                loss.backward(retain_graph=True)
                x_grad_actual = x.gradient()
                x_grad_expected = (i + 2) * (2.0 / float(numel) * (
                    x_np + dx_expected *
                    (x_np > 0) * 2 / float(numel))).astype('float32')
                self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    def test_example_with_gradient_accumulation_and_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_create_graph()
        self.func_example_with_gradient_accumulation_and_create_graph()

365
    @dygraph_guard
366
    def func_example_with_gradient_accumulation_and_no_grad_vars(self):
367 368 369 370 371 372 373 374 375 376 377 378 379 380
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

        dx_actual, = self.grad(
Z
Zeng Jinle 已提交
381
            [w_mean], [x], create_graph=True, no_grad_vars=[y2])
382 383 384 385 386 387 388 389

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

390 391 392 393 394
        if core._in_eager_mode():
            pass
        else:
            loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
            loss.backward()
395

396 397 398 399 400 401 402 403 404 405
            x_grad_actual = x.gradient()
            x_grad_expected = (2.0 / float(numel) * (
                x_np + dx_expected *
                (x_np > 0) * 4 / float(numel))).astype('float32')
            self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    def test_example_with_gradient_accumulation_and_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_no_grad_vars()
        self.func_example_with_gradient_accumulation_and_no_grad_vars()
406 407

    @dygraph_guard
408
    def func_example_with_gradient_accumulation_and_not_create_graph(self):
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=False)
        del w_mean

        self.assertTrue(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')

        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

431 432 433 434 435
        if core._in_eager_mode():
            pass
        else:
            loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
            loss.backward()
436

437 438 439 440 441 442 443 444
            x_grad_actual = x.gradient()
            x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
            self.assertTrue(np.allclose(x_grad_actual, x_grad_expected))

    def test_example_with_gradient_accumulation_and_not_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_not_create_graph()
        self.func_example_with_gradient_accumulation_and_not_create_graph()
445 446 447 448 449 450 451 452


class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
    def setUp(self):
        self.sort_sum_gradient = True
        self.shape = [5, 10]


H
hong 已提交
453
class TestDygraphDoubleGradVisitedUniq(TestCase):
454
    def func_compare(self):
455 456
        value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2,
                                                          5).astype("float32")
H
hong 已提交
457 458

        def model_f(input):
459
            linear = fluid.dygraph.Linear(5, 3, bias_attr=False)
H
hong 已提交
460 461
            for i in range(10):
                if i == 0:
462
                    out = linear(input)
H
hong 已提交
463
                else:
464
                    out = out + linear(input)
H
hong 已提交
465 466
            return out

467 468
        fluid.set_flags({'FLAGS_sort_sum_gradient': True})

H
hong 已提交
469
        with fluid.dygraph.guard():
C
cnn 已提交
470
            paddle.seed(123)
L
Leo Chen 已提交
471
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
472 473 474 475 476
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)

477 478 479
            dx = fluid.dygraph.grad(
                outputs=[out],
                inputs=[a],
480
                create_graph=False,
481
                only_inputs=True,
482
                allow_unused=False)
H
hong 已提交
483 484 485 486

            grad_1 = dx[0].numpy()

        with fluid.dygraph.guard():
C
cnn 已提交
487
            paddle.seed(123)
L
Leo Chen 已提交
488
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
489 490 491 492
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)
493
            out.backward()
H
hong 已提交
494 495 496

            grad_2 = a.gradient()

497 498
        self.assertTrue(np.array_equal(grad_1, grad_2))

499 500 501 502 503
    def test_compare(self):
        with _test_eager_guard():
            self.func_compare()
        self.func_compare()

504 505 506 507 508 509

class TestRaiseNoDoubleGradOp(TestCase):
    def raise_no_grad_op(self):
        with fluid.dygraph.guard():
            x = fluid.layers.ones(shape=[2, 3, 2, 2], dtype='float32')
            x.stop_gradient = False
510
            y = paddle.fluid.layers.group_norm(x, groups=1)
511 512 513 514 515 516 517 518 519

            dx = fluid.dygraph.grad(
                outputs=[y], inputs=[x], create_graph=True,
                retain_graph=True)[0]

            loss = fluid.layers.reduce_mean(dx)
            loss.backward()

    def test_raise(self):
520
        self.assertRaises(RuntimeError, self.raise_no_grad_op)
H
hong 已提交
521 522


Z
Zeng Jinle 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
class TestDoubleGradResNetBase(TestCase):
    @dygraph_guard
    def check_resnet(self):
        data = np.random.rand(1, 3, 224, 224).astype(np.float32)
        data = paddle.to_tensor(data)
        data.stop_gradient = False
        out = self.model(data)
        preds = paddle.argmax(out, axis=1)
        label_onehot = paddle.nn.functional.one_hot(
            paddle.to_tensor(preds), num_classes=out.shape[1])
        target = paddle.sum(out * label_onehot, axis=1)

        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))


class TestDoubleGradResNet50(TestDoubleGradResNetBase):
    def setUp(self):
        self.model = resnet50(pretrained=False)

    def test_main(self):
        self.check_resnet()


class TestDoubleGradResNet101(TestDoubleGradResNetBase):
    def setUp(self):
        self.model = resnet101(pretrained=False)

    def test_main(self):
        self.check_resnet()


556 557
if __name__ == '__main__':
    unittest.main()