lstmp_op.cc 16.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Y
Yibing Liu 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lstmp_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class LSTMPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
27 28 29 30 31 32 33 34 35 36 37 38 39
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "LSTMP");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "LSTMP");
    OP_INOUT_CHECK(ctx->HasInput("ProjWeight"), "Input", "ProjWeight", "LSTMP");
    OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "LSTMP");

    OP_INOUT_CHECK(ctx->HasOutput("Projection"), "Output", "Projection",
                   "LSTMP");
    OP_INOUT_CHECK(ctx->HasOutput("Cell"), "Output", "Cell", "LSTMP");
    OP_INOUT_CHECK(ctx->HasOutput("BatchGate"), "Output", "BatchGate", "LSTMP");
    OP_INOUT_CHECK(ctx->HasOutput("BatchCellPreAct"), "Output",
                   "BatchCellPreAct", "LSTMP");
    OP_INOUT_CHECK(ctx->HasOutput("BatchHidden"), "Output", "BatchHidden",
                   "LSTMP");
40 41

    auto in_dims = ctx->GetInputDim("Input");
42

43 44 45 46 47
    PADDLE_ENFORCE_EQ(
        in_dims.size(), 2,
        platform::errors::InvalidArgument(
            "Input(X)'s rank of LSTMP operator must be 2, but received %d.",
            in_dims.size()));
48 49 50 51

    int frame_size = in_dims[1] / 4;
    auto w_dims = ctx->GetInputDim("Weight");
    auto proj_dims = ctx->GetInputDim("ProjWeight");
52 53 54 55 56 57 58 59 60 61 62
    PADDLE_ENFORCE_EQ(
        w_dims.size(), 2,
        platform::errors::InvalidArgument(
            "The rank of Input(Weight) should be 2, but received %d.",
            w_dims.size()));
    PADDLE_ENFORCE_EQ(
        w_dims[0], proj_dims[1],
        platform::errors::InvalidArgument(
            "The first dimension of Input(Weight) and the second dimension of "
            "Input(ProjWeight) should be the same, but received %d vs %d.",
            w_dims[0], proj_dims[1]));
63
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
64 65 66 67 68 69 70 71 72 73
                      platform::errors::InvalidArgument(
                          "The second dimension of Input(Weight) should be 4 * "
                          "%d, but received %d.",
                          frame_size, w_dims[1]));

    PADDLE_ENFORCE_EQ(
        proj_dims.size(), 2,
        platform::errors::InvalidArgument(
            "The rank of Input(ProjWeight) should be 2, but received %d.",
            proj_dims.size()));
74
    PADDLE_ENFORCE_EQ(proj_dims[0], frame_size,
75 76 77 78
                      platform::errors::InvalidArgument(
                          "The first dimension of Input(ProjWeight) should be "
                          "%d, but received %d.",
                          frame_size, proj_dims[0]));
79

80
    if (ctx->HasInput("H0")) {
81 82 83 84
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("C0"), true,
          platform::errors::NotFound("Input(C0) of LSTMP operator should not "
                                     "be null after Input(H0) provided."));
85 86
    }

87
    auto b_dims = ctx->GetInputDim("Bias");
88 89 90 91 92 93 94 95 96 97
    PADDLE_ENFORCE_EQ(
        b_dims.size(), 2,
        platform::errors::InvalidArgument(
            "The rank of Input(Bias) should be 2, but received %d.",
            b_dims.size()));
    PADDLE_ENFORCE_EQ(
        b_dims[0], 1,
        platform::errors::InvalidArgument(
            "The first dimension of Input(Bias) should be 1, but received %d.",
            b_dims[0]));
98 99

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
100 101 102 103 104 105
      PADDLE_ENFORCE_EQ(
          b_dims[1], 7 * frame_size,
          platform::errors::InvalidArgument(
              "The second dimension of Input(Bias) should be 7 * %d if enable "
              "peepholes connection, but received %d.",
              frame_size, b_dims[1]));
106
    } else {
107 108 109 110 111 112
      PADDLE_ENFORCE_EQ(
          b_dims[1], 4 * frame_size,
          platform::errors::InvalidArgument(
              "The second dimension of Input(Bias) should be 4 * %d if disable "
              "peepholes connection, but received %d.",
              frame_size, b_dims[1]));
113 114 115 116 117 118 119 120
    }

    framework::DDim out_dims({in_dims[0], frame_size});
    framework::DDim proj_out_dims({in_dims[0], proj_dims[1]});
    ctx->SetOutputDim("Projection", proj_out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
121
    ctx->SetOutputDim("BatchHidden", out_dims);
122 123 124 125 126 127 128 129
    ctx->ShareLoD("Input", "Projection");
    ctx->ShareLoD("Input", "Cell");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
130 131
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
132 133 134 135 136
  }
};

class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
137
  void Make() override {
138
    AddInput("Input",
Y
Yibing Liu 已提交
139
             "(LoDTensor) the input for sequence data, which supports "
140 141 142 143 144 145 146 147 148 149 150
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
             "batch size and D is the hidden size.")
        .AsDispensable();
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
151
             "batch size. `C0` should not be null if `H0` provided.")
152 153 154
        .AsDispensable();
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
Y
Yibing Liu 已提交
155 156
             " - The shape is (P x 4D), where P is the projection layer size "
             "and  D is the hidden size."
157 158
             " - Weight = {W_cr, W_ir, W_fr, W_or}");
    AddInput("ProjWeight",
Y
Yibing Liu 已提交
159
             "(Tensor) the learnable weight of the projection layer."
160
             " - The shape is (D x P), where P is the recurrent projection "
Y
Yibing Liu 已提交
161 162
             "layer size and  D is the hidden size."
             " - ProjWeight = {W_rh}");
163
    AddInput("Bias",
Y
Yibing Liu 已提交
164 165 166
             "(Tensor) the learnable biases, which contains two parts: "
             "input-hidden biases and peephole connections weights if "
             "setting `use_peepholes` to `True`. "
167 168 169 170 171 172 173 174
             "1. `use_peepholes = False` "
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
             "2. `use_peepholes = True` "
             " - The shape is (1 x 7D). "
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
    AddOutput("Projection",
              "(LoDTensor) the projection of the hidden state of LSTMP "
Y
Yibing Liu 已提交
175
              "operator. The shape is (T x P), and LoD is the same with the "
176 177 178 179 180 181
              "`Input`.");
    AddOutput("Cell",
              "(LoDTensor) the cell state of LSTMP operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yibing Liu 已提交
182 183 184 185 186
              "and output gate after the activations. This LoDTensor has the "
              "same shape as the reorganized input, which is also be called "
              "batch input. The LoD size is 2. The first-level LoD is the "
              "batch offsets and the second contains the indices, which "
              "denotes the position of reorganized sequence in the raw input.")
187 188
        .AsIntermediate();
    AddOutput("BatchCellPreAct",
Y
Yibing Liu 已提交
189 190 191
              "(LoDTensor) the pre-activation cell state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
192
        .AsIntermediate();
193
    AddOutput("BatchHidden",
Y
Yibing Liu 已提交
194 195 196
              "(LoDTensor) the hidden state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
197
        .AsIntermediate();
198
    AddAttr<bool>("use_peepholes",
翟飞跃 已提交
199
                  "(bool, default: True) "
200 201 202
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
    AddAttr<bool>("is_reverse",
翟飞跃 已提交
203
                  "(bool, default: False) "
204 205
                  "whether to compute reversed LSTMP.")
        .SetDefault(false);
206
    AddAttr<float>("cell_clip",
翟飞跃 已提交
207
                   "(float, default: 0.0) "
208 209 210 211
                   "Clip for Tensor for cell state tensor when clip value is "
                   "greater than 0.0")
        .SetDefault(0.0);
    AddAttr<float>("proj_clip",
翟飞跃 已提交
212
                   "(float, default: 0.0) "
213 214 215
                   "Clip for Tensor for projection tensor when clip value is "
                   "greater than 0.0")
        .SetDefault(0.0);
216 217 218 219 220 221 222 223 224
    AddAttr<std::string>(
        "gate_activation",
        "(string, default: sigmoid)"
        "The activation for input gate, forget gate and output "
        "gate, `sigmoid` by default.")
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("cell_activation",
                         "(string, default: tanh)"
翟飞跃 已提交
225
                         "The activation for cell output, `tanh` by default.")
226 227 228 229 230 231 232 233
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("candidate_activation",
                         "(string, default: tanh)"
                         "The activation for candidate hidden state, "
                         "`tanh` by default.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
234 235 236
    AddAttr<std::string>("proj_activation",
                         "(string, default: tanh)"
                         "The activation for projection output, "
翟飞跃 已提交
237
                         "`tanh` by default.")
238 239
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
240
    AddComment(R"DOC(
Y
Yibing Liu 已提交
241
Long-Short Term Memory with recurrent Projection layer (LSTMP) Operator.
242

Y
Yibing Liu 已提交
243 244 245 246 247
LSTMP has a separate projection layer after the LSTM layer, projecting the 
original hidden state to a lower-dimensional one, which is proposed to reduce 
the number of total parameters and furthermore computational complexity for 
the LSTM, espeacially for the case that the size of output units is relative 
large (https://research.google.com/pubs/archive/43905.pdf). 
248

249 250 251
The formula is as follows:

$$
252
i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i) \\
253

254
f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f) \\
255

256
\tilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c) \\
257

258
o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o) \\
259

260
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\
Y
Yibing Liu 已提交
261

262
h_t = o_t \odot act_h(c_t) \\
263

Y
Yibing Liu 已提交
264
r_t = \overline{act_h}(W_{rh}h_t)
265 266 267 268 269
$$

where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
are diagonal weight matrices for peephole connections. In our implementation,
翟飞跃 已提交
270
we use vectors to represent these diagonal weight matrices. The b terms
271
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
Y
Yibing Liu 已提交
272
is the activation, such as logistic sigmoid function, and
273 274
$i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
Y
Yibing Liu 已提交
275 276 277 278
the cell output activation vector $h$. Here $h$ is usually called the hidden 
state and $r$ denotes its recurrent projection. And $\tilde{c_t}$ is also 
called the candidate hidden state, whose computation is based on the current 
input and previous hidden state.
279 280 281

The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
are the cell input and cell output activation functions and `tanh` is usually
282 283
used for them. $\overline{act_h}$ is the activation function for the 
projection output, usually using `identity` or same as $act_h$.
284 285 286

Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
Y
Yibing Liu 已提交
287
Users can choose to use fully-connected operator before LSTMP operator.
288 289 290 291 292

)DOC");
  }
};

H
hong 已提交
293 294
template <typename T>
class LSTMPGradMaker : public framework::SingleGradOpMaker<T> {
295
 public:
H
hong 已提交
296
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
297 298

 protected:
299
  void Apply(GradOpPtr<T> grad_op) const override {
300
    grad_op->SetType("lstmp_grad");
H
hong 已提交
301 302 303 304 305 306 307 308 309 310 311
    grad_op->SetInput("Weight", this->Input("Weight"));
    grad_op->SetInput("ProjWeight", this->Input("ProjWeight"));
    grad_op->SetInput("Bias", this->Input("Bias"));

    grad_op->SetInput("Projection", this->Output("Projection"));
    grad_op->SetInput("Cell", this->Output("Cell"));
    grad_op->SetInput("BatchGate", this->Output("BatchGate"));
    grad_op->SetInput("BatchCellPreAct", this->Output("BatchCellPreAct"));
    grad_op->SetInput("BatchHidden", this->Output("BatchHidden"));
    grad_op->SetInput("H0", this->Input("H0"));
    grad_op->SetInput("C0", this->Input("C0"));
312 313

    grad_op->SetInput(framework::GradVarName("Projection"),
H
hong 已提交
314
                      this->OutputGrad("Projection"));
315

H
hong 已提交
316 317 318 319
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetOutput(framework::GradVarName("Weight"),
                       this->InputGrad("Weight"));
320
    grad_op->SetOutput(framework::GradVarName("ProjWeight"),
H
hong 已提交
321 322 323 324
                       this->InputGrad("ProjWeight"));
    grad_op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    grad_op->SetOutput(framework::GradVarName("H0"), this->InputGrad("H0"));
    grad_op->SetOutput(framework::GradVarName("C0"), this->InputGrad("C0"));
325

H
hong 已提交
326
    grad_op->SetAttrMap(this->Attrs());
327 328 329
  }
};

330 331 332 333 334
class LSTMPGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
335 336 337 338 339 340 341 342 343 344 345 346
    OP_INOUT_CHECK(ctx->HasInput("Projection"), "Input", "Projection",
                   "LSTMP@Grad");
    OP_INOUT_CHECK(ctx->HasInput("Cell"), "Input", "Cell", "LSTMP@Grad");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "LSTMP@Grad");
    OP_INOUT_CHECK(ctx->HasInput("ProjWeight"), "Input", "ProjWeight",
                   "LSTMP@Grad");
    OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "LSTMP@Grad");

    OP_INOUT_CHECK(ctx->HasInput("BatchGate"), "Input", "BatchGate",
                   "LSTMP@Grad");
    OP_INOUT_CHECK(ctx->HasInput("BatchCellPreAct"), "Input", "BatchCellPreAct",
                   "LSTMP@Grad");
347 348 349 350 351 352 353

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

354 355
    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("BatchGate"));
356
    SetOutGradDim("Weight");
357
    SetOutGradDim("ProjWeight");
358 359 360 361 362 363 364 365 366
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
367
        OperatorWithKernel::IndicateVarDataType(ctx, "BatchGate"),
368
        ctx.device_context());
369 370 371 372 373 374 375
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
376 377 378
REGISTER_OPERATOR(lstmp, ops::LSTMPOp, ops::LSTMPOpMaker,
                  ops::LSTMPGradMaker<paddle::framework::OpDesc>,
                  ops::LSTMPGradMaker<paddle::imperative::OpBase>);
379
REGISTER_OPERATOR(lstmp_grad, ops::LSTMPGradOp);
380 381 382 383 384 385
REGISTER_OP_CPU_KERNEL(
    lstmp, ops::LSTMPKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstmp_grad, ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, double>);