lstmp_op.cc 15.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Y
Yibing Liu 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lstmp_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

class LSTMPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
28
                   "Input(Input) of LSTMP operator should not be null.");
29
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
30
                   "Input(Weight) of LSTMP operator should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
32
                   "Input(ProjWeight) of LSTMP operator should not be null.");
33
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
34
                   "Input(Bias) of LSTMP operator should not be null.");
35 36

    PADDLE_ENFORCE(ctx->HasOutput("Projection"),
37
                   "Output(Projection) of LSTMP operator should not be null.");
38
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
39
                   "Output(Cell) of LSTMP operator should not be null.");
40
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
41
                   "Output(BatchGate) of LSTMP operator should not be null.");
42
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
43 44
                   "Output(BatchCellPreAct) of LSTMP operator should not be "
                   "null.");
45
    PADDLE_ENFORCE(ctx->HasOutput("BatchHidden"),
46
                   "Output(BatchHidden) of LSTMP operator should not be null.");
47 48

    auto in_dims = ctx->GetInputDim("Input");
49

50 51
    PADDLE_ENFORCE_EQ(in_dims.size(), 2,
                      "Input(X)'s rank of LSTMP operator must be 2.");
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

    int frame_size = in_dims[1] / 4;
    auto w_dims = ctx->GetInputDim("Weight");
    auto proj_dims = ctx->GetInputDim("ProjWeight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], proj_dims[1],
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      proj_dims[1]);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);

    PADDLE_ENFORCE_EQ(proj_dims.size(), 2,
                      "The rank of Input(ProjWeight) should be 2.");
    PADDLE_ENFORCE_EQ(proj_dims[0], frame_size,
                      "The first dimension of Input(ProjWeight) "
                      "should be %d.",
                      frame_size);

74 75
    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
76 77
                     "Input(C0) of LSTMP operator should not be null after "
                     "Input(H0) provided.");
78 79
    }

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "4 * %d if disable peepholes connection",
                        frame_size);
    }

    framework::DDim out_dims({in_dims[0], frame_size});
    framework::DDim proj_out_dims({in_dims[0], proj_dims[1]});
    ctx->SetOutputDim("Projection", proj_out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
103
    ctx->SetOutputDim("BatchHidden", out_dims);
104 105 106 107 108 109 110 111
    ctx->ShareLoD("Input", "Projection");
    ctx->ShareLoD("Input", "Cell");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
112 113
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
114 115 116 117 118
  }
};

class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
119
  void Make() override {
120
    AddInput("Input",
Y
Yibing Liu 已提交
121
             "(LoDTensor) the input for sequence data, which supports "
122 123 124 125 126 127 128 129 130 131 132
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
             "batch size and D is the hidden size.")
        .AsDispensable();
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
133
             "batch size. `C0` should not be null if `H0` provided.")
134 135 136
        .AsDispensable();
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
Y
Yibing Liu 已提交
137 138
             " - The shape is (P x 4D), where P is the projection layer size "
             "and  D is the hidden size."
139 140
             " - Weight = {W_cr, W_ir, W_fr, W_or}");
    AddInput("ProjWeight",
Y
Yibing Liu 已提交
141
             "(Tensor) the learnable weight of the projection layer."
142
             " - The shape is (D x P), where P is the recurrent projection "
Y
Yibing Liu 已提交
143 144
             "layer size and  D is the hidden size."
             " - ProjWeight = {W_rh}");
145
    AddInput("Bias",
Y
Yibing Liu 已提交
146 147 148
             "(Tensor) the learnable biases, which contains two parts: "
             "input-hidden biases and peephole connections weights if "
             "setting `use_peepholes` to `True`. "
149 150 151 152 153 154 155 156
             "1. `use_peepholes = False` "
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
             "2. `use_peepholes = True` "
             " - The shape is (1 x 7D). "
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
    AddOutput("Projection",
              "(LoDTensor) the projection of the hidden state of LSTMP "
Y
Yibing Liu 已提交
157
              "operator. The shape is (T x P), and LoD is the same with the "
158 159 160 161 162 163
              "`Input`.");
    AddOutput("Cell",
              "(LoDTensor) the cell state of LSTMP operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yibing Liu 已提交
164 165 166 167 168
              "and output gate after the activations. This LoDTensor has the "
              "same shape as the reorganized input, which is also be called "
              "batch input. The LoD size is 2. The first-level LoD is the "
              "batch offsets and the second contains the indices, which "
              "denotes the position of reorganized sequence in the raw input.")
169 170
        .AsIntermediate();
    AddOutput("BatchCellPreAct",
Y
Yibing Liu 已提交
171 172 173
              "(LoDTensor) the pre-activation cell state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
174
        .AsIntermediate();
175
    AddOutput("BatchHidden",
Y
Yibing Liu 已提交
176 177 178
              "(LoDTensor) the hidden state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
179
        .AsIntermediate();
180
    AddAttr<bool>("use_peepholes",
翟飞跃 已提交
181
                  "(bool, default: True) "
182 183 184
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
    AddAttr<bool>("is_reverse",
翟飞跃 已提交
185
                  "(bool, default: False) "
186 187
                  "whether to compute reversed LSTMP.")
        .SetDefault(false);
188
    AddAttr<float>("cell_clip",
翟飞跃 已提交
189
                   "(float, default: 0.0) "
190 191 192 193
                   "Clip for Tensor for cell state tensor when clip value is "
                   "greater than 0.0")
        .SetDefault(0.0);
    AddAttr<float>("proj_clip",
翟飞跃 已提交
194
                   "(float, default: 0.0) "
195 196 197
                   "Clip for Tensor for projection tensor when clip value is "
                   "greater than 0.0")
        .SetDefault(0.0);
198 199 200 201 202 203 204 205 206
    AddAttr<std::string>(
        "gate_activation",
        "(string, default: sigmoid)"
        "The activation for input gate, forget gate and output "
        "gate, `sigmoid` by default.")
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("cell_activation",
                         "(string, default: tanh)"
翟飞跃 已提交
207
                         "The activation for cell output, `tanh` by default.")
208 209 210 211 212 213 214 215
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("candidate_activation",
                         "(string, default: tanh)"
                         "The activation for candidate hidden state, "
                         "`tanh` by default.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
216 217 218
    AddAttr<std::string>("proj_activation",
                         "(string, default: tanh)"
                         "The activation for projection output, "
翟飞跃 已提交
219
                         "`tanh` by default.")
220 221
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
222
    AddComment(R"DOC(
Y
Yibing Liu 已提交
223
Long-Short Term Memory with recurrent Projection layer (LSTMP) Operator.
224

Y
Yibing Liu 已提交
225 226 227 228 229
LSTMP has a separate projection layer after the LSTM layer, projecting the 
original hidden state to a lower-dimensional one, which is proposed to reduce 
the number of total parameters and furthermore computational complexity for 
the LSTM, espeacially for the case that the size of output units is relative 
large (https://research.google.com/pubs/archive/43905.pdf). 
230

231 232 233
The formula is as follows:

$$
234
i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i) \\
235

236
f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f) \\
237

238
\tilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c) \\
239

240
o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o) \\
241

242
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\
Y
Yibing Liu 已提交
243

244
h_t = o_t \odot act_h(c_t) \\
245

Y
Yibing Liu 已提交
246
r_t = \overline{act_h}(W_{rh}h_t)
247 248 249 250 251
$$

where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
are diagonal weight matrices for peephole connections. In our implementation,
翟飞跃 已提交
252
we use vectors to represent these diagonal weight matrices. The b terms
253
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
Y
Yibing Liu 已提交
254
is the activation, such as logistic sigmoid function, and
255 256
$i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
Y
Yibing Liu 已提交
257 258 259 260
the cell output activation vector $h$. Here $h$ is usually called the hidden 
state and $r$ denotes its recurrent projection. And $\tilde{c_t}$ is also 
called the candidate hidden state, whose computation is based on the current 
input and previous hidden state.
261 262 263

The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
are the cell input and cell output activation functions and `tanh` is usually
264 265
used for them. $\overline{act_h}$ is the activation function for the 
projection output, usually using `identity` or same as $act_h$.
266 267 268

Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
Y
Yibing Liu 已提交
269
Users can choose to use fully-connected operator before LSTMP operator.
270 271 272 273 274

)DOC");
  }
};

H
hong 已提交
275 276
template <typename T>
class LSTMPGradMaker : public framework::SingleGradOpMaker<T> {
277
 public:
H
hong 已提交
278
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
279 280

 protected:
281
  void Apply(GradOpPtr<T> grad_op) const override {
282
    grad_op->SetType("lstmp_grad");
H
hong 已提交
283 284 285 286 287 288 289 290 291 292 293
    grad_op->SetInput("Weight", this->Input("Weight"));
    grad_op->SetInput("ProjWeight", this->Input("ProjWeight"));
    grad_op->SetInput("Bias", this->Input("Bias"));

    grad_op->SetInput("Projection", this->Output("Projection"));
    grad_op->SetInput("Cell", this->Output("Cell"));
    grad_op->SetInput("BatchGate", this->Output("BatchGate"));
    grad_op->SetInput("BatchCellPreAct", this->Output("BatchCellPreAct"));
    grad_op->SetInput("BatchHidden", this->Output("BatchHidden"));
    grad_op->SetInput("H0", this->Input("H0"));
    grad_op->SetInput("C0", this->Input("C0"));
294 295

    grad_op->SetInput(framework::GradVarName("Projection"),
H
hong 已提交
296
                      this->OutputGrad("Projection"));
297

H
hong 已提交
298 299 300 301
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetOutput(framework::GradVarName("Weight"),
                       this->InputGrad("Weight"));
302
    grad_op->SetOutput(framework::GradVarName("ProjWeight"),
H
hong 已提交
303 304 305 306
                       this->InputGrad("ProjWeight"));
    grad_op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    grad_op->SetOutput(framework::GradVarName("H0"), this->InputGrad("H0"));
    grad_op->SetOutput(framework::GradVarName("C0"), this->InputGrad("C0"));
307

H
hong 已提交
308
    grad_op->SetAttrMap(this->Attrs());
309 310 311
  }
};

312 313 314 315 316
class LSTMPGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
317
    PADDLE_ENFORCE(ctx->HasInput("Projection"),
318
                   "Input(Projection) of LSTMP operator should not be null.");
319
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
320
                   "Input(Cell) of LSTMP operator should not be null.");
321
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
322
                   "Input(Weight) of LSTMP operator should not be null.");
323
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
324
                   "Input(ProjWeight) of LSTMP operator should not be null.");
325
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
326
                   "Input(Bias) of LSTMP operator should not be null.");
327 328

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
329
                   "Input(BatchGate) of LSTMP operator should not be null.");
330
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
331
                   "Input(BatchGate) of LSTMP operator should not be null.");
332 333 334 335 336 337 338

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

339 340
    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("BatchGate"));
341
    SetOutGradDim("Weight");
342
    SetOutGradDim("ProjWeight");
343 344 345 346 347 348 349 350 351
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
352
        OperatorWithKernel::IndicateVarDataType(ctx, "BatchGate"),
353
        ctx.device_context());
354 355 356 357 358 359 360
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
361 362 363
REGISTER_OPERATOR(lstmp, ops::LSTMPOp, ops::LSTMPOpMaker,
                  ops::LSTMPGradMaker<paddle::framework::OpDesc>,
                  ops::LSTMPGradMaker<paddle::imperative::OpBase>);
364
REGISTER_OPERATOR(lstmp_grad, ops::LSTMPGradOp);
365 366 367 368 369 370
REGISTER_OP_CPU_KERNEL(
    lstmp, ops::LSTMPKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstmp_grad, ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, double>);