test_accuracy_op.py 7.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

武毅 已提交
15
import unittest
16

武毅 已提交
17
import numpy as np
T
tianshuo78520a 已提交
18
from eager_op_test import OpTest, convert_float_to_uint16, paddle_static_guard
19

S
Steffy-zxf 已提交
20
import paddle
21
from paddle import fluid
22
from paddle.fluid import Program, core, program_guard
武毅 已提交
23 24


姜永久 已提交
25 26 27 28
def accuracy_wrapper(infer, indices, label):
    return paddle._C_ops.accuracy(infer, indices, label)


武毅 已提交
29 30 31
class TestAccuracyOp(OpTest):
    def setUp(self):
        self.op_type = "accuracy"
姜永久 已提交
32
        self.python_api = accuracy_wrapper
W
Wu Yi 已提交
33 34
        self.dtype = np.float32
        self.init_dtype()
35
        n = 8192
W
Wu Yi 已提交
36
        infer = np.random.random((n, 1)).astype(self.dtype)
W
wopeizl 已提交
37 38
        indices = np.random.randint(0, 2, (n, 1)).astype('int64')
        label = np.random.randint(0, 2, (n, 1)).astype('int64')
武毅 已提交
39
        self.inputs = {'Out': infer, 'Indices': indices, "Label": label}
武毅 已提交
40
        num_correct = 0
41
        for rowid in range(n):
武毅 已提交
42 43
            for ele in indices[rowid]:
                if ele == label[rowid]:
武毅 已提交
44 45
                    num_correct += 1
                    break
Y
Yang Yang(Tony) 已提交
46
        self.outputs = {
47 48 49
            'Accuracy': np.array(num_correct / float(n)).astype(self.dtype),
            'Correct': np.array(num_correct).astype("int32"),
            'Total': np.array(n).astype("int32"),
Y
Yang Yang(Tony) 已提交
50
        }
武毅 已提交
51

W
Wu Yi 已提交
52 53 54
    def init_dtype(self):
        pass

武毅 已提交
55 56 57 58
    def test_check_output(self):
        self.check_output()


W
Wu Yi 已提交
59 60 61 62 63 64 65 66
class TestAccuracyOpFp16(TestAccuracyOp):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        self.check_output(atol=1e-3)


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA and not support the bfloat16",
)
class TestAccuracyOpBf16(OpTest):
    def setUp(self):
        self.op_type = "accuracy"
        self.python_api = accuracy_wrapper
        self.init_dtype()
        n = 8192
        infer = np.random.random((n, 1)).astype(np.float32)
        indices = np.random.randint(0, 2, (n, 1)).astype('int64')
        label = np.random.randint(0, 2, (n, 1)).astype('int64')
        self.inputs = {
            'Out': convert_float_to_uint16(infer),
            'Indices': indices,
            "Label": label,
        }
        num_correct = 0
        for rowid in range(n):
            for ele in indices[rowid]:
                if ele == label[rowid]:
                    num_correct += 1
                    break
        self.outputs = {
            'Accuracy': convert_float_to_uint16(
94
                np.array(num_correct / float(n)).astype(np.float32)
95
            ),
96 97
            'Correct': np.array(num_correct).astype("int32"),
            'Total': np.array(n).astype("int32"),
98 99 100 101 102 103 104 105 106 107 108
        }

    def init_dtype(self):
        self.dtype = np.uint16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-2)


109
class TestAccuracyOpError(unittest.TestCase):
110
    def test_type_errors(self):
W
wanghuancoder 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        with paddle_static_guard():
            with program_guard(Program(), Program()):
                # The input type of accuracy_op must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([[-1]]), [[1]], fluid.CPUPlace()
                )
                label = paddle.static.data(
                    name='label', shape=[-1, 1], dtype="int32"
                )
                self.assertRaises(TypeError, paddle.static.accuracy, x1, label)
                self.assertRaises(TypeError, paddle.metric.accuracy, x1, label)
                # The input dtype of accuracy_op must be float32 or float64.
                x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="int32")
                self.assertRaises(TypeError, paddle.static.accuracy, x2, label)
                self.assertRaises(TypeError, paddle.metric.accuracy, x2, label)

                x3 = paddle.static.data(
                    name='input', shape=[-1, 2], dtype="float16"
                )
                paddle.static.accuracy(input=x3, label=label)
                paddle.metric.accuracy(input=x3, label=label)
S
Steffy-zxf 已提交
132

133 134 135 136 137 138 139 140 141 142
    def test_value_errors(self):
        with program_guard(Program(), Program()):
            # The input rank of accuracy_op must be 2.
            with self.assertRaises(ValueError):
                x3 = paddle.to_tensor([0.1], dtype='float32')
                label3 = paddle.to_tensor(
                    np.reshape([0], [1, 1]), dtype='int32'
                )
                paddle.metric.accuracy(x3, label3)

S
Steffy-zxf 已提交
143

144 145
class TestAccuracyAPI1(unittest.TestCase):
    def setUp(self):
W
wanghuancoder 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        with paddle_static_guard():
            self.predictions = paddle.static.data(
                shape=[2, 5], name="predictions", dtype="float32"
            )
            self.label = paddle.static.data(
                shape=[2, 1], name="labels", dtype="int64"
            )
            self.result = paddle.static.accuracy(
                input=self.predictions, label=self.label, k=1
            )
            self.input_predictions = np.array(
                [[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]],
                dtype="float32",
            )
            self.input_labels = np.array([[2], [0]], dtype="int64")
            self.expect_value = np.array([0.5], dtype='float32')
162 163

    def test_api(self):
W
wanghuancoder 已提交
164 165 166 167 168 169 170 171 172 173
        with paddle_static_guard():
            exe = paddle.static.Executor()
            (result,) = exe.run(
                feed={
                    "predictions": self.input_predictions,
                    'labels': self.input_labels,
                },
                fetch_list=[self.result.name],
            )
            self.assertEqual((result == self.expect_value).all(), True)
174 175 176 177 178 179 180


class TestAccuracyAPI2(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            predictions = paddle.to_tensor(
                [[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]],
181 182
                dtype='float32',
            )
183 184 185 186 187 188
            label = paddle.to_tensor([[2], [0]], dtype="int64")
            result = paddle.static.accuracy(input=predictions, label=label, k=1)
            expect_value = np.array([0.5], dtype='float32')
            self.assertEqual((result.numpy() == expect_value).all(), True)


S
Steffy-zxf 已提交
189 190 191 192 193
class TestAccuracyAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            predictions = paddle.to_tensor(
                [[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]],
194 195
                dtype='float32',
            )
S
Steffy-zxf 已提交
196 197 198 199 200
            label = paddle.to_tensor([[2], [0]], dtype="int64")
            result = paddle.metric.accuracy(input=predictions, label=label, k=1)
            expect_value = np.array([0.5], dtype='float32')

            self.assertEqual((result.numpy() == expect_value).all(), True)
201 202


武毅 已提交
203 204
if __name__ == '__main__':
    unittest.main()