layout_autotune.cc 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layout_autotune.h"
16

17 18 19 20 21 22 23 24 25 26 27 28
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/imperative/layout_transformer.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"

namespace paddle {
namespace imperative {

bool LayoutAutoTune::UseLayoutAutoTune() const {
#if defined(PADDLE_WITH_CUDA)
  if (!phi::backends::gpu::TensorCoreAvailable()) {
29
    LayoutAutoTune::Instance().DisableLayoutAutoTune();
30 31 32 33 34 35 36 37 38 39 40 41
    return false;
  } else {
    return use_layout_autotune_;
  }
#else
  return false;
#endif
}

LayoutAutoTune::LayoutAutoTune() {
  const auto& op_info = paddle::framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
42 43 44 45
    // only when op was not in Lightly、Heavily or Agnostic Set
    if (IsLightlyLayoutSensitive(it->first) ||
        IsHeavilyLayoutSensitive(it->first) || IsLayoutAgnostic(it->first)) {
      VLOG(4) << "Already exists in Layout OP: " << it->first;
46 47 48
      continue;
    }

49 50
    // only record forwrd operators
    if (it->first.find("_grad") != std::string::npos) {
51 52 53 54
      continue;
    }

    auto* attr_checker = it->second.Checker();
55
    bool layout_agnostic = true;
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (attr_checker) {
      auto attrs = attr_checker->GetDefaultAttrMap();
      // Attribute name is fuzzy matched, such as start and start_axis.
      for (auto& attr : attrs) {
        auto attr_name = attr.first;
        VLOG(6) << "OP: " << it->first << " Attr Name: " << attr_name;
        if (attr_name.find("axis") != std::string::npos ||
            attr_name.find("axes") != std::string::npos ||
            attr_name.find("dim") != std::string::npos ||
            attr_name.find("start") != std::string::npos ||
            attr_name.find("end") != std::string::npos) {
          VLOG(4) << "Lightly layout sensitive OP: " << it->first;
          layout_agnostic = false;
          lightly_layout_sensitive_ops_.emplace(it->first);
          break;
        }
      }

74 75 76 77 78 79 80
      if ((attrs.find("data_format") != attrs.end() ||
           attrs.find("data_layout") != attrs.end()) &&
          layout_agnostic == true) {
        VLOG(4) << "Heavily layout sensitive OP: " << it->first;
        heavily_layout_sensitive_ops_.emplace(it->first);
        layout_agnostic = false;
        continue;
81 82
      }
    }
83 84 85 86 87 88 89 90 91 92 93 94

    // some normalization operators such as instance_norm and layer_norm
    // do not have data_format attr, but are layout sensitive.
    if (it->first.find("norm") != std::string::npos && layout_agnostic) {
      lightly_layout_sensitive_ops_.emplace(it->first);
      continue;
    }

    if (layout_agnostic) {
      VLOG(4) << "Layout agnostic_ops: " << it->first;
      layout_agnostic_ops_.emplace(it->first);
    }
95 96 97 98 99 100 101 102 103
  }

  VLOG(3) << "The number of layout agnostic OPs: "
          << layout_agnostic_ops_.size() << ", heavily layout sensitive OPs: "
          << heavily_layout_sensitive_ops_.size()
          << ", lightly layout sensitive OPs: "
          << lightly_layout_sensitive_ops_.size();
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
template <typename VarType>
paddle::imperative::NameVarMap<VarType> DealHeavilyLayoutSensitive(
    const std::string& op_type,
    const paddle::imperative::NameVarMap<VarType>& ins,
    const paddle::imperative::NameVarMap<VarType>& outs,
    paddle::framework::AttributeMap* attrs,
    const std::shared_ptr<imperative::Tracer>& tracer) {
  std::shared_ptr<LayoutTransformer<VarType>> transposer = nullptr;
  transposer =
      std::make_shared<HeavilyLayoutSensitiveOpTransformer<VarType>>(op_type);
  transposer->SetArguments(
      {"Input", "X"}, {"Output", "Out", "Y"}, {"data_format", "data_layout"});

  return transposer->Apply(ins, outs, attrs, tracer);
}

template <typename VarType>
paddle::imperative::NameVarMap<VarType> DealLightlyLayoutSensitive(
    const std::string& op_type,
    const paddle::imperative::NameVarMap<VarType>& ins,
    const paddle::imperative::NameVarMap<VarType>& outs,
    paddle::framework::AttributeMap* attrs,
    const std::shared_ptr<imperative::Tracer>& tracer) {
  std::shared_ptr<LayoutTransformer<VarType>> transposer = nullptr;
  if (op_type == "transpose2") {
    transposer = std::make_shared<TransposeOpTransformer<VarType>>(op_type);
  } else if (op_type == "flatten_contiguous_range") {
    transposer = std::make_shared<FlattenOpTransformer<VarType>>(op_type);
  } else if (op_type == "arg_max") {
    transposer = std::make_shared<ArgmaxOpTransformer<VarType>>(op_type);
  } else if (op_type.find("elementwise_") != std::string::npos) {
    transposer = std::make_shared<ElementwiseOpTransformer<VarType>>(op_type);
  } else {
    VLOG(4) << op_type
            << "'s LayoutTransformer is unimplemented. Use default "
               "LightlyLayoutTransformer instead.";
    transposer =
        std::make_shared<LightlyLayoutSensitiveOpTransformer<VarType>>(op_type);
  }
  return transposer->Apply(ins, outs, attrs, tracer);
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
template <typename VarType>
paddle::imperative::NameVarMap<VarType> AutoTuneLayout(
    const std::string& op_type,
    const paddle::imperative::NameVarMap<VarType>& ins,
    const paddle::imperative::NameVarMap<VarType>& outs,
    paddle::framework::AttributeMap* attrs,
    const std::shared_ptr<imperative::Tracer>& tracer) {
  if (!LayoutAutoTune::Instance().UseLayoutAutoTune()) {
    return ins;
  }
  // When layout autotuning is enabled, the tuner will check the desired layout.
  // (1) If the desired layout is undefined, and there is no convolutional
  // layers, layout optimization is unnecessary. Otherwise, the desired layout
  // will be set to the best layout only when these is a convolutional layer
  // with
  // NCHW-Layout and the TensorCore is available.
  // (2) If the desired layout is defined, run the transposer.

  if (LayoutAutoTune::Instance().GetDesiredLayout() == DataLayout::UNDEFINED) {
    // Layout autotune only supports model with convolutional layers
    if (op_type != "conv2d") {
      return ins;
    } else {
169 170 171 172 173 174 175 176 177 178 179 180 181 182
      auto conv_in_type = framework::proto::VarType::FP32;
      auto& in_vars = ins.at("Input")[0];
      if (GetDataType<VarType>(in_vars) == framework::proto::VarType::FP16) {
        conv_in_type = framework::proto::VarType::FP16;
      }
      bool is_tune_fp32 =
          (BOOST_GET_CONST(std::string, (*attrs)["data_format"]) == "NHWC") &&
          (conv_in_type == framework::proto::VarType::FP32);
      bool is_tune_fp16 =
          (BOOST_GET_CONST(std::string, (*attrs)["data_format"]) == "NCHW") &&
          (conv_in_type == framework::proto::VarType::FP16);
      if (is_tune_fp32) {
        LayoutAutoTune::Instance().SetDesiredLayout(DataLayout::NCHW);
      } else if (is_tune_fp16) {
183 184 185 186 187
        LayoutAutoTune::Instance().SetDesiredLayout(DataLayout::NHWC);
      } else {
        LayoutAutoTune::Instance().DisableLayoutAutoTune();
        return ins;
      }
188 189 190 191
      VLOG(3) << "Tune the layout from "
              << BOOST_GET_CONST(std::string, (*attrs)["data_format"]) << " to "
              << paddle::framework::DataLayoutToString(
                     LayoutAutoTune::Instance().GetDesiredLayout());
192 193 194
    }
  }

195 196 197
  if (LayoutAutoTune::Instance().IsHeavilyLayoutSensitive(op_type)) {
    return DealHeavilyLayoutSensitive<VarType>(
        op_type, ins, outs, attrs, tracer);
198
  } else if (LayoutAutoTune::Instance().IsLightlyLayoutSensitive(op_type)) {
199 200
    return DealLightlyLayoutSensitive<VarType>(
        op_type, ins, outs, attrs, tracer);
201
  } else {
202 203 204 205
    std::shared_ptr<LayoutTransformer<VarType>> transposer = nullptr;
    if (LayoutAutoTune::Instance().IsLayoutAgnostic(op_type)) {
      transposer = std::make_shared<LayoutTransformer<VarType>>(op_type);
    }
206
    PADDLE_ENFORCE_NOT_NULL(
207 208 209 210
        transposer,
        phi::errors::Unimplemented("%s 's LayoutTransformer is unimplemented.",
                                   op_type));
    return transposer->Apply(ins, outs, attrs, tracer);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  }
}
template paddle::imperative::NameVarMap<VarBase> AutoTuneLayout<VarBase>(
    const std::string& op_type,
    const paddle::imperative::NameVarMap<VarBase>& ins,
    const paddle::imperative::NameVarMap<VarBase>& outs,
    paddle::framework::AttributeMap* attrs,
    const std::shared_ptr<imperative::Tracer>& tracer);
template paddle::imperative::NameVarMap<egr::EagerVariable>
AutoTuneLayout<egr::EagerVariable>(
    const std::string& op_type,
    const paddle::imperative::NameVarMap<egr::EagerVariable>& ins,
    const paddle::imperative::NameVarMap<egr::EagerVariable>& outs,
    paddle::framework::AttributeMap* attrs,
    const std::shared_ptr<imperative::Tracer>& tracer);

}  // namespace imperative
}  // namespace paddle