layout_autotune.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layout_autotune.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/imperative/layout_transformer.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"

namespace paddle {
namespace imperative {

bool LayoutAutoTune::UseLayoutAutoTune() const {
#if defined(PADDLE_WITH_CUDA)
  if (!phi::backends::gpu::TensorCoreAvailable()) {
    LOG(INFO) << "Layout AutoTuning is not available.";
    return false;
  } else {
    return use_layout_autotune_;
  }
#else
  return false;
#endif
}

LayoutAutoTune::LayoutAutoTune() {
  const auto& op_info = paddle::framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    // only record forwrd operators
    if (it->first.find("_grad") != std::string::npos) {
      continue;
    }

    // some normalization operators such as instance_norm and layer_norm
    // do not have data_format attr, but are layout sensitive.
    if (it->first.find("norm") != std::string::npos) {
      layout_agnostic_ops_.emplace(it->first);
      continue;
    }

    auto* attr_checker = it->second.Checker();
    if (attr_checker) {
      auto attrs = attr_checker->GetDefaultAttrMap();
      if (attrs.find("data_format") != attrs.end() ||
          attrs.find("data_layout") != attrs.end()) {
        VLOG(4) << "Heavily layout sensitive OP: " << it->first;
        heavily_layout_sensitive_ops_.emplace(it->first);
        continue;
      }

      // Attribute name is fuzzy matched, such as start and start_axis.
      bool layout_agnostic = true;
      for (auto& attr : attrs) {
        auto attr_name = attr.first;
        VLOG(6) << "OP: " << it->first << " Attr Name: " << attr_name;
        if (attr_name.find("axis") != std::string::npos ||
            attr_name.find("axes") != std::string::npos ||
            attr_name.find("dim") != std::string::npos ||
            attr_name.find("start") != std::string::npos ||
            attr_name.find("end") != std::string::npos) {
          VLOG(4) << "Lightly layout sensitive OP: " << it->first;
          layout_agnostic = false;
          lightly_layout_sensitive_ops_.emplace(it->first);
          break;
        }
      }

      if (layout_agnostic) {
        VLOG(4) << "Layout agnostic_ops: " << it->first;
        layout_agnostic_ops_.emplace(it->first);
      }
    }
  }

  VLOG(3) << "The number of layout agnostic OPs: "
          << layout_agnostic_ops_.size() << ", heavily layout sensitive OPs: "
          << heavily_layout_sensitive_ops_.size()
          << ", lightly layout sensitive OPs: "
          << lightly_layout_sensitive_ops_.size();
}

template <typename VarType>
paddle::imperative::NameVarMap<VarType> AutoTuneLayout(
    const std::string& op_type,
    const paddle::imperative::NameVarMap<VarType>& ins,
    const paddle::imperative::NameVarMap<VarType>& outs,
    paddle::framework::AttributeMap* attrs,
    const std::shared_ptr<imperative::Tracer>& tracer) {
  if (!LayoutAutoTune::Instance().UseLayoutAutoTune()) {
    return ins;
  }

  // When layout autotuning is enabled, the tuner will check the desired layout.
  // (1) If the desired layout is undefined, and there is no convolutional
  // layers, layout optimization is unnecessary. Otherwise, the desired layout
  // will be set to the best layout only when these is a convolutional layer
  // with
  // NCHW-Layout and the TensorCore is available.
  // (2) If the desired layout is defined, run the transposer.

  if (LayoutAutoTune::Instance().GetDesiredLayout() == DataLayout::UNDEFINED) {
    // Layout autotune only supports model with convolutional layers
    if (op_type != "conv2d") {
      return ins;
    } else {
      if (BOOST_GET_CONST(std::string, (*attrs)["data_format"]) == "NCHW") {
        LayoutAutoTune::Instance().SetDesiredLayout(DataLayout::NHWC);
        VLOG(3) << "Tune the layout from "
                << BOOST_GET_CONST(std::string, (*attrs)["data_format"])
                << " to " << paddle::framework::DataLayoutToString(
                                 LayoutAutoTune::Instance().GetDesiredLayout());
      } else {
        LayoutAutoTune::Instance().DisableLayoutAutoTune();
        return ins;
      }
    }
  }

  std::shared_ptr<LayoutTransformer<VarType>> transposer = nullptr;
  if (op_type == "conv2d") {
    transposer =
        std::make_shared<HeavilyLayoutSensitiveOpTransformer<VarType>>(op_type);
    transposer->SetArguments({"Input"}, {"Output"}, {"data_format"});
  } else if (op_type == "batch_norm") {
    transposer =
        std::make_shared<HeavilyLayoutSensitiveOpTransformer<VarType>>(op_type);
    transposer->SetArguments({"X"}, {"Y"}, {"data_layout"});
  } else if (op_type == "pool2d") {
    transposer =
        std::make_shared<HeavilyLayoutSensitiveOpTransformer<VarType>>(op_type);
    transposer->SetArguments({"X"}, {"Out"}, {"data_format"});
  } else if (op_type == "transpose2") {
    transposer = std::make_shared<TransposeOpTransformer<VarType>>(op_type);
  } else if (op_type == "flatten_contiguous_range") {
    transposer = std::make_shared<FlattenOpTransformer<VarType>>(op_type);
  } else if (op_type.find("elementwise_") != std::string::npos) {
    transposer = std::make_shared<ElementwiseOpTransformer<VarType>>(op_type);
  } else if (LayoutAutoTune::Instance().IsLayoutAgnostic(op_type)) {
    transposer = std::make_shared<LayoutTransformer<VarType>>(op_type);
  } else if (LayoutAutoTune::Instance().IsLightlyLayoutSensitive(op_type)) {
    transposer =
        std::make_shared<LightlyLayoutSensitiveOpTransformer<VarType>>(op_type);
  } else {
    PADDLE_ENFORCE_NOT_NULL(
        transposer, phi::errors::Unimplemented(
                        "%s 's LayoutTransformer is unimplemented.", op_type));
  }

  return transposer->Apply(ins, outs, attrs, tracer);
}
template paddle::imperative::NameVarMap<VarBase> AutoTuneLayout<VarBase>(
    const std::string& op_type,
    const paddle::imperative::NameVarMap<VarBase>& ins,
    const paddle::imperative::NameVarMap<VarBase>& outs,
    paddle::framework::AttributeMap* attrs,
    const std::shared_ptr<imperative::Tracer>& tracer);
template paddle::imperative::NameVarMap<egr::EagerVariable>
AutoTuneLayout<egr::EagerVariable>(
    const std::string& op_type,
    const paddle::imperative::NameVarMap<egr::EagerVariable>& ins,
    const paddle::imperative::NameVarMap<egr::EagerVariable>& outs,
    paddle::framework::AttributeMap* attrs,
    const std::shared_ptr<imperative::Tracer>& tracer);

}  // namespace imperative
}  // namespace paddle