gradient_accumulator.cc 28.3 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/gradient_accumulator.h"
16

J
Jiabin Yang 已提交
17 18 19
#include <algorithm>
#include <memory>
#include <utility>
20

J
Jiabin Yang 已提交
21 22 23 24 25
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
26
#include "paddle/fluid/operators/math/selected_rows_functor.h"
27
#include "paddle/fluid/platform/complex.h"
J
Jiabin Yang 已提交
28
#include "paddle/fluid/platform/device_context.h"
29
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/platform/profiler.h"
H
hong 已提交
31 32 33
#ifdef PADDLE_WITH_XPU
#include "xpu/refactor/math.h"
#endif
34 35 36
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/operators/npu_op_runner.h"
#endif
J
Jiabin Yang 已提交
37 38 39 40

namespace paddle {
namespace imperative {

41 42 43
static void MoveOrCopyVar(framework::Variable* dst, framework::Variable* src,
                          bool force_copy) {
  if (!force_copy) {
44
    VLOG(6) << "Just Move Variable when sum gradients within this graph";
45 46 47 48
    *dst = std::move(*src);
    return;
  }

49
  VLOG(6) << "Copy occurs when sum gradients within this graph";
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  if (src->IsType<framework::LoDTensor>()) {
    auto& src_tensor = src->Get<framework::LoDTensor>();
    if (!dst->IsType<framework::LoDTensor>()) {
      dst->Clear();
    }
    auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
    framework::TensorCopy(src_tensor, src_tensor.place(), dst_tensor);
    dst_tensor->set_lod(src_tensor.lod());
  } else if (src->IsType<framework::SelectedRows>()) {
    auto& src_selected_rows = src->Get<framework::SelectedRows>();
    if (!dst->IsType<framework::SelectedRows>()) {
      dst->Clear();
    }
    auto* dst_selected_rows = dst->GetMutable<framework::SelectedRows>();
    framework::TensorCopy(src_selected_rows.value(),
                          src_selected_rows.value().place(),
                          dst_selected_rows->mutable_value());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    dst_selected_rows->set_height(src_selected_rows.height());
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
71
        "Only support LoDTensor and SelectedRows for sum gradient"));
72 73 74
  }
}

J
Jiabin Yang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87
template <typename T>
class TensorAddFunctor : public boost::static_visitor<> {
 public:
  TensorAddFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

  void operator()(const platform::CPUPlace& place) {
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }

H
hong 已提交
88 89 90 91 92 93 94
#ifdef PADDLE_WITH_XPU
  void operator()(const platform::XPUPlace& place) {
    platform::XPUDeviceContext* ctx = dynamic_cast<platform::XPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    xpu::add<T>(ctx->x_context(), x_, y_, y_, static_cast<int>(numel_));
  }
#else
95 96 97 98 99 100
  void operator()(const platform::XPUPlace& place) {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
H
hong 已提交
101
#endif
102

103
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
J
Jiabin Yang 已提交
104 105 106 107 108 109 110 111 112
  void operator()(const platform::CUDAPlace& place) {
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
  void operator()(const platform::CUDAPlace& place) {
113
    PADDLE_THROW(platform::errors::PermissionDenied(
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#endif

#ifdef PADDLE_WITH_ASCEND_CL
  void operator()(const platform::NPUPlace& place) {
    // TODO(zhiqiu): SUPPORT it
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
#else
  void operator()(const platform::NPUPlace& place) {
    PADDLE_THROW(platform::errors::PermissionDenied(
131 132 133
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
134 135 136
  }
#endif

137 138 139 140 141 142
  void operator()(const platform::NPUPinnedPlace& place) {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
J
Jiabin Yang 已提交
143 144
  // there is NO blas in CUDAPinnedPlace
  void operator()(const platform::CUDAPinnedPlace& place) {
145 146 147 148
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
149 150 151 152 153 154 155 156
  }

 private:
  int64_t numel_;
  const T* x_;
  T* y_;
};

157 158 159 160 161 162 163 164 165 166
template <typename DeviceContext, typename T>
void TensorAddImpl(const framework::Tensor& src, framework::Tensor* dst,
                   const platform::Place& place) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  paddle::platform::DeviceContext* ctx = pool.Get(place);
  auto dev_ctx = dynamic_cast<DeviceContext*>(ctx);
  operators::math::ElementwiseAddTo<DeviceContext, T> func;
  func(dev_ctx, src, dst);
}

J
Jiabin Yang 已提交
167 168 169 170 171 172 173 174 175 176 177 178
void TensorAdd(const framework::Variable& src, framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  auto& src_tensor = src.Get<framework::LoDTensor>();

  auto numel = src_tensor.numel();

  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (numel == 0) {
    return;
  }

179 180 181 182 183 184 185
  PADDLE_ENFORCE_EQ(
      dst_tensor->numel(), numel,
      platform::errors::PreconditionNotMet(
          "The number of elements of source tensor and destination tensor "
          "should be equal, but got the number of elements of source tensor is "
          "%zu and the number of elements of destination tensor is %zu.",
          numel, dst_tensor->numel()));
J
Jiabin Yang 已提交
186 187 188 189

  auto data_type = src_tensor.type();
  auto place = src_tensor.place();

190 191 192 193 194 195
  PADDLE_ENFORCE_EQ(dst_tensor->type(), data_type,
                    platform::errors::PreconditionNotMet(
                        "The data type of source tensor and destination tensor "
                        "should be equal, Otherwise, the calculation results "
                        "will be incorrect."));

196
#define PADDLE_TENSOR_ADD(cpp_type)                                  \
J
Jiabin Yang 已提交
197 198 199 200 201 202 203 204
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
    TensorAddFunctor<cpp_type> func(                                 \
        numel, src_tensor.data<cpp_type>(),                          \
        dst_tensor->mutable_data<cpp_type>(place));                  \
    boost::apply_visitor(func, place);                               \
    return;                                                          \
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::DeviceContext* ctx = pool.Get(place);
    auto dev_ctx = dynamic_cast<platform::NPUDeviceContext*>(ctx);
    if (data_type == framework::DataTypeTrait<float>::DataType()) {
      dst_tensor->mutable_data<float>(place);
    } else if (data_type == framework::DataTypeTrait<double>::DataType()) {
      dst_tensor->mutable_data<double>(place);
    } else if (data_type ==
               framework::DataTypeTrait<platform::float16>::DataType()) {
      dst_tensor->mutable_data<platform::float16>(place);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
    }
    const auto& runner = operators::NpuOpRunner(
        "Add", {*dst_tensor, src_tensor}, {*dst_tensor}, {});
    runner.Run(dev_ctx->stream());
    return;
  }
#endif
229
  PADDLE_TENSOR_ADD(float);
H
hong 已提交
230 231
#ifndef PADDLE_WITH_XPU
  // NOTE(phlrain): xpu only support float
232
  PADDLE_TENSOR_ADD(double);
233 234
  // NOTE(chenweihang): only support complex grad tensor accumulated,
  // support selected rows if needed in the future
235 236
  PADDLE_TENSOR_ADD(platform::complex<float>);
  PADDLE_TENSOR_ADD(platform::complex<double>);
H
hong 已提交
237
#endif
J
Jiabin Yang 已提交
238

239
#undef PADDLE_TENSOR_ADD
J
Jiabin Yang 已提交
240

241 242
  if (data_type == framework::proto::VarType::FP16) {
    if (platform::is_gpu_place(place)) {
243
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
      return TensorAddImpl<platform::CUDADeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
#endif
    } else if (platform::is_cpu_place(place)) {
      return TensorAddImpl<platform::CPUDeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
    }
  }
  PADDLE_THROW(platform::errors::Unimplemented(
      "Gradient accumulation of data type (%s) on place (%s) is not "
      "supported in imperative mode",
      framework::DataTypeToString(data_type), place));
J
Jiabin Yang 已提交
261 262
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
void SelectedRowsAddToTensor(const framework::Variable& src,
                             framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  auto& src_selected_rows = src.Get<framework::SelectedRows>();
  auto place = dst_tensor->place();
  auto data_type = src_selected_rows.value().type();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

#define PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(dev_ctx_type, cpp_type)           \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {         \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);              \
    paddle::operators::math::SelectedRowsAddToTensor<dev_ctx_type, cpp_type> \
        functor;                                                             \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,      \
            dst_tensor);                                                     \
    return;                                                                  \
  }

281
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
282 283 284 285 286 287 288
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, double);
289
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
290 291 292 293 294 295 296 297 298 299
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD_TO_TENSOR

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static void SelectedRowsAddTensor(
    const framework::Variable& src_selected_rows_var,
    const framework::Variable& src_tensor_var,
    framework::Variable* dst_tensor_var) {
  const auto& src_selected_rows =
      src_selected_rows_var.Get<framework::SelectedRows>();
  const auto& src_tensor = src_tensor_var.Get<framework::LoDTensor>();
  const auto& place = src_tensor.place();
  auto data_type = src_tensor.type();
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);

  auto* dst_tensor = dst_tensor_var->GetMutable<framework::LoDTensor>();
  dst_tensor->Resize(src_tensor.dims());
  dst_tensor->mutable_data(place, data_type);

#define PADDLE_SELECTED_ROWS_ADD_TENSOR(dev_ctx_type, cpp_type)            \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {       \
    paddle::operators::math::SelectedRowsAddTensor<dev_ctx_type, cpp_type> \
        functor;                                                           \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,    \
            src_tensor, dst_tensor);                                       \
    return;                                                                \
  }

324
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
325 326 327 328 329 330 331
  if (platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, double);
332
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
333 334 335 336 337 338 339 340 341 342
  }
#endif

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));

#undef PADDLE_SELECTED_ROWS_ADD_TENSOR
}

343 344 345
// Note(chenweihang): when two selected rows need to be added,
//   adding one to another is not equal to merging two selected rows
//   to one then add it to a empty selected rows, the after is correct
346 347
std::shared_ptr<VariableWrapper> SelectedRowsMerge(
    const framework::Variable& src1, const framework::Variable& src2) {
348 349 350 351 352 353 354 355 356
  auto& src_selected_rows1 = src1.Get<framework::SelectedRows>();
  auto& src_selected_rows2 = src2.Get<framework::SelectedRows>();
  auto place = src_selected_rows1.value().place();
  auto data_type = src_selected_rows1.value().type();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

  std::vector<const framework::SelectedRows*> src_selected_rows;
  src_selected_rows.emplace_back(&src_selected_rows1);
  src_selected_rows.emplace_back(&src_selected_rows2);
357
  auto dst_var = std::make_shared<VariableWrapper>("Temp");
358 359 360 361 362 363 364 365 366 367 368 369 370
  auto* dst_selected_rows =
      dst_var->MutableVar()->GetMutable<framework::SelectedRows>();

#define PADDLE_SELECTED_ROWS_ADD(dev_ctx_type, cpp_type)                  \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {      \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);           \
    paddle::operators::math::scatter::MergeAdd<dev_ctx_type, cpp_type>    \
        merge_add;                                                        \
    merge_add(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows, \
              dst_selected_rows);                                         \
    return dst_var;                                                       \
  }

371
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
372 373 374 375 376 377 378
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, double);
379
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
380 381 382 383 384 385 386 387 388 389
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsMerge",
      framework::DataTypeToString(data_type)));
}

390
void VariableWrapperAdd(std::shared_ptr<VariableWrapper> var,
391
                        VariableWrapper* dst_var, bool unchange_input) {
392
  auto& src = var->Var();
393
  auto* dst = dst_var->MutableVar();
394 395 396 397 398 399 400 401 402 403 404 405
  if (dst->IsType<framework::LoDTensor>()) {
    if (src.IsType<framework::LoDTensor>()) {
      TensorAdd(src, dst);
    } else if (src.IsType<framework::SelectedRows>()) {
      SelectedRowsAddToTensor(src, dst);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  } else {
    if (src.IsType<framework::LoDTensor>()) {
406 407 408 409 410 411 412 413 414
      if (unchange_input) {
        framework::Variable new_dst;
        SelectedRowsAddTensor(*dst, src, &new_dst);
        *dst = std::move(new_dst);
      } else {
        auto* src_mutable = var->MutableVar();
        SelectedRowsAddToTensor(*dst, src_mutable);
        *dst = std::move(*(var->MutableVar()));
      }
415
    } else if (src.IsType<framework::SelectedRows>()) {
416
      auto temp = SelectedRowsMerge(src, *dst);
417 418 419 420 421 422 423 424 425
      *dst = std::move(*(temp->MutableVar()));
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  }
}

426 427
static platform::Place GetPlaceOfVar(
    const std::shared_ptr<VariableWrapper>& var) {
428 429 430 431 432 433 434 435 436 437 438 439
  platform::Place place;
  if (var->Var().IsType<framework::LoDTensor>()) {
    place = var->Var().Get<framework::LoDTensor>().place();
  } else if (var->Var().IsType<framework::SelectedRows>()) {
    place = var->Var().Get<framework::SelectedRows>().place();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "only support LoDTensor and SelectedRows in dygraph"));
  }
  return place;
}

440 441
void GradientAccumulator::AccumulateGrad() {
  /**
442 443
   * If the leaf gradient has been calculated done, the inner_var_
   * should be added to the var_.
444 445 446 447 448 449 450 451 452 453
   */
  if (!var_->IsLeafGrad() || !SumGradCompleted() || !HasInnerVar()) {
    return;
  }
  PADDLE_ENFORCE_EQ(HasInnerVar(), true,
                    platform::errors::InvalidArgument(
                        "Leaf tensor should have inner var to store results of "
                        "this auto-grad"));
  PADDLE_ENFORCE_EQ(inner_var_->Var().IsInitialized(), true,
                    platform::errors::InvalidArgument(
454
                        "Interior var of Leaf tensor should be initialized."));
455 456 457
  auto* src = inner_var_->MutableVar();
  auto* dst = var_->MutableVar();
  if (!var_->IsEmpty()) {
458 459 460
    VLOG(6) << "Leaf Var(" << var_->Name()
            << ")'s Gradient has been initizlized, will accumulate on "
               "previous gradient.";
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    if (dst->IsType<framework::LoDTensor>()) {
      if (src->IsType<framework::LoDTensor>()) {
        TensorAdd(*src, dst);
      } else if (src->IsType<framework::SelectedRows>()) {
        SelectedRowsAddToTensor(*src, dst);
      }
    } else if (dst->IsType<framework::SelectedRows>()) {
      if (src->IsType<framework::LoDTensor>()) {
        SelectedRowsAddToTensor(*dst, src);
        *dst = std::move(*src);
      } else if (src->IsType<framework::SelectedRows>()) {
        auto temp = SelectedRowsMerge(*src, *dst);
        *dst = std::move(*(temp->MutableVar()));
      }
    } else {
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Only support LoDTensor and SelectedRows for gradient var"));
    }
  } else {
480 481 482
    VLOG(6)
        << "Leaf Var(" << var_->Name()
        << ")'s Gradient has not been initialized, not accumulate. Just move";
483 484 485
    *(dst) = std::move(*src);
    var_->SetType(inner_var_->Type());
    var_->SetDataType(inner_var_->DataType());
486
    var_->SetIsEmpty(false);
487 488 489 490
  }
  inner_var_.reset();
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
void GradientAccumulator::CallGradientHooks() {
  PADDLE_ENFORCE_EQ(var_->IsLeafGrad(), true,
                    platform::errors::Unavailable(
                        "Only leaf gradient Tensor can deal with by gradient "
                        "hook in gradient accumulator."));
  PADDLE_ENFORCE_EQ(
      SumGradCompleted(), true,
      platform::errors::PreconditionNotMet(
          "Only can call gradient hooks after sum gradient completed."));
  PADDLE_ENFORCE_EQ(
      HasInnerVar(), true,
      platform::errors::PreconditionNotMet(
          "Leaf Tensor's inner var is nullptr when call gradient hook."));
  PADDLE_ENFORCE_EQ(
      inner_var_->Var().IsInitialized(), true,
      platform::errors::PreconditionNotMet("Leaf Tensor's inner var "
                                           "is not initialized when "
                                           "call gradient hook."));
509 510
  if (var_->HasVariableWrapperHook()) {
    VLOG(3) << "Call " << var_->GetVariableWrapperHooks().size()
511 512 513 514
            << " hooks of leaf gradient accumulator's inner var `"
            << var_->Name() << "`.";
    auto tmp_var = inner_var_;
    VLOG(3) << "Input var " << var_->Name() << "'s hook size - "
515 516
            << var_->GetVariableWrapperHooks().size();
    for (const auto& hook_pair : var_->GetVariableWrapperHooks()) {
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
      tmp_var = (*hook_pair.second)(tmp_var);
    }
    inner_var_ = tmp_var;
  }
}

void GradientAccumulator::CallReduceHooks() {
  PADDLE_ENFORCE_EQ(
      var_->IsLeafGrad(), true,
      platform::errors::Unavailable("Only leaf gradient Tensor can deal with "
                                    "by reduce hook in gradient accumulator."));
  PADDLE_ENFORCE_EQ(SumGradCompleted(), true,
                    platform::errors::PreconditionNotMet(
                        "Only can call reduce hooks after the gradient "
                        "summation is completed in current batch."));
  PADDLE_ENFORCE_EQ(HasInnerVar(), false,
                    platform::errors::PreconditionNotMet(
                        "Only can call reduce hooks after the "
                        "gradient accumulation is completed in "
                        "current batch or across batchs."));
537 538
  if (var_->HasVoidHook()) {
    for (const auto& hook : var_->GetVoidHooks()) {
539
      VLOG(3) << "call gradient accumulator backward hooks.";
540
      (*hook)();
541 542 543 544
    }
  }
}

545 546
void EagerGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
                                       size_t trace_id, bool unchange_input) {
547 548 549 550 551 552 553 554
  /**
   * If var has grad node, it indicates that this var would be an input
   * of a grad op. Therefore, it should not be changed.
   */
  if (var->HasGradNode()) {
    unchange_input = true;
  }

555
  auto* dst_var = Var();
556
  platform::Place place = GetPlaceOfVar(var);
557 558 559
  if (!dst_var->OverridedStopGradient()) {
    if (CurCnt() == 0) {
      MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(), unchange_input);
560
    } else {
561 562 563
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
      VariableWrapperAdd(var, dst_var, unchange_input);
564
    }
J
Jiabin Yang 已提交
565
  } else {
566 567 568
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
      VLOG(6) << "Set StopGradient Grad: " << dst_var->Name() << " as zero ";
569
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
570 571 572 573
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
574 575 576 577 578
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      } else {
579 580
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
581 582 583
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
584
    }
J
Jiabin Yang 已提交
585
  }
586

587 588 589 590 591 592
  // Type may be changed after OP run, such as VarTypeInference
  // so synchronous VariableWrapper with Variable.
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
  } else if (dst_var->Var().IsType<framework::SelectedRows>()) {
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
593
  }
594

595
  // Increase curent count
596
  IncreaseCurCnt();
J
Jiabin Yang 已提交
597 598
}

599 600 601
void SortedGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
                                        size_t trace_id, bool unchange_input) {
  auto* dst_var = Var();
602
  platform::Place place = GetPlaceOfVar(var);
603
  if (!dst_var->OverridedStopGradient()) {
604
    if (ref_cnt_ == 1) {
605
      MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(),
606
                    unchange_input || var->HasGradNode());
607 608 609 610 611
    } else {
      if (tmp_grad_vars_.empty()) {
        tmp_grad_vars_.reserve(ref_cnt_);
      }

612
      tmp_grad_vars_.emplace_back(std::move(var), trace_id, unchange_input);
613 614 615 616 617

      if (tmp_grad_vars_.size() != ref_cnt_) {
        return;
      }

618 619
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
620 621 622 623 624 625 626 627 628 629
      std::sort(tmp_grad_vars_.begin(), tmp_grad_vars_.end(),
                [](const SavedVarInfo& info1, const SavedVarInfo& info2) {
                  return info1.trace_id > info2.trace_id;
                });

      for (auto& var_info : tmp_grad_vars_) {
        if (var_info.var->HasGradNode()) {
          var_info.unchange_input = true;
        }
      }
630

631
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
632
      if (paddle::platform::is_gpu_place(place)) {
633
        // sum selected rows firstly
634 635 636
        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var->Var().IsType<framework::SelectedRows>()) {
            continue;
637
          }
638

639 640
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
641 642
                          var_info.unchange_input);
          } else {
643
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
644
          }
645 646

          var_info.var = nullptr;
647 648
          // Increase count
          IncreaseCurCnt();
649 650 651 652 653 654 655 656 657 658
        }

        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }

          PADDLE_ENFORCE_EQ(var_info.var->Var().IsType<framework::LoDTensor>(),
                            true, platform::errors::PermissionDenied(
                                      "Gradient var must be LoDTensor"));
659 660
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
661 662
                          var_info.unchange_input);
          } else {
663
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
664
          }
665 666

          var_info.var = nullptr;
667 668
          // Increase count
          IncreaseCurCnt();
669 670 671
        }
      } else {
#endif
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }
          PADDLE_ENFORCE_EQ(
              var_info.var->Var().IsType<framework::LoDTensor>() ||
                  var_info.var->Var().IsType<framework::SelectedRows>(),
              true, platform::errors::PermissionDenied("The type of Gradient "
                                                       "var must be LoDTensor "
                                                       "or SelectedRows"));
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
                          var_info.unchange_input);
          } else {
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
          }
          var_info.var = nullptr;
          // Increase count
          IncreaseCurCnt();
691
        }
692
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
693
      }
694
#endif
695
      tmp_grad_vars_.clear();
J
Jiabin Yang 已提交
696
    }
697
  } else {
698 699
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
700 701
      VLOG(6) << "Set StopGradient Grad: " << var->Name() << " as zero";
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
702 703 704 705
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
706 707 708 709 710
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      } else {
711 712
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
713 714 715
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
J
Jiabin Yang 已提交
716
    }
717
    // looks like tmp_grad_vars will not have any member but just in case
J
Jiabin Yang 已提交
718 719
    tmp_grad_vars_.clear();
  }
720

721 722 723 724
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
  } else if (dst_var->Var().IsType<framework::SelectedRows>()) {
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
725
  }
J
Jiabin Yang 已提交
726 727 728 729
}

}  // namespace imperative
}  // namespace paddle