gradient_accumulator.cc 18.2 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/gradient_accumulator.h"
#include <algorithm>
#include <memory>
#include <utility>
19
#include "paddle/fluid/framework/framework.pb.h"
J
Jiabin Yang 已提交
20 21 22 23 24
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
25
#include "paddle/fluid/operators/math/selected_rows_functor.h"
J
Jiabin Yang 已提交
26 27 28 29 30 31
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/profiler.h"

namespace paddle {
namespace imperative {

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
static void MoveOrCopyVar(framework::Variable* dst, framework::Variable* src,
                          bool force_copy) {
  if (!force_copy) {
    *dst = std::move(*src);
    return;
  }

  VLOG(10) << "Copy occurs when accumulating gradients";
  if (src->IsType<framework::LoDTensor>()) {
    auto& src_tensor = src->Get<framework::LoDTensor>();
    if (!dst->IsType<framework::LoDTensor>()) {
      dst->Clear();
    }
    auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
    framework::TensorCopy(src_tensor, src_tensor.place(), dst_tensor);
    dst_tensor->set_lod(src_tensor.lod());
  } else if (src->IsType<framework::SelectedRows>()) {
    auto& src_selected_rows = src->Get<framework::SelectedRows>();
    if (!dst->IsType<framework::SelectedRows>()) {
      dst->Clear();
    }
    auto* dst_selected_rows = dst->GetMutable<framework::SelectedRows>();
    framework::TensorCopy(src_selected_rows.value(),
                          src_selected_rows.value().place(),
                          dst_selected_rows->mutable_value());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    dst_selected_rows->set_height(src_selected_rows.height());
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Only support LoDTensor and SelectedRows for gradient accumulation"));
  }
}

J
Jiabin Yang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
template <typename T>
class TensorAddFunctor : public boost::static_visitor<> {
 public:
  TensorAddFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

  void operator()(const platform::CPUPlace& place) {
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }

#ifdef PADDLE_WITH_CUDA
  void operator()(const platform::CUDAPlace& place) {
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
  void operator()(const platform::CUDAPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }
#endif

  // there is NO blas in CUDAPinnedPlace
  void operator()(const platform::CUDAPinnedPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }

 private:
  int64_t numel_;
  const T* x_;
  T* y_;
};

void TensorAdd(const framework::Variable& src, framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  auto& src_tensor = src.Get<framework::LoDTensor>();

  auto numel = src_tensor.numel();

  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (numel == 0) {
    return;
  }

  PADDLE_ENFORCE_EQ(dst_tensor->numel() == numel, true,
                    "dst_numel %d vs. src_numel %d", dst_tensor->numel(),
                    numel);

  auto data_type = src_tensor.type();
  auto place = src_tensor.place();

122
#define PADDLE_TENSOR_ADD(cpp_type)                                  \
J
Jiabin Yang 已提交
123 124 125 126 127 128 129 130
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
    TensorAddFunctor<cpp_type> func(                                 \
        numel, src_tensor.data<cpp_type>(),                          \
        dst_tensor->mutable_data<cpp_type>(place));                  \
    boost::apply_visitor(func, place);                               \
    return;                                                          \
  }

131 132
  PADDLE_TENSOR_ADD(float);
  PADDLE_TENSOR_ADD(double);
J
Jiabin Yang 已提交
133

134
#undef PADDLE_TENSOR_ADD
J
Jiabin Yang 已提交
135 136 137 138 139

  PADDLE_THROW("Not supported data type %s for AddTo",
               framework::DataTypeToString(data_type));
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
void SelectedRowsAddToTensor(const framework::Variable& src,
                             framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  auto& src_selected_rows = src.Get<framework::SelectedRows>();
  auto place = dst_tensor->place();
  auto data_type = src_selected_rows.value().type();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

#define PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(dev_ctx_type, cpp_type)           \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {         \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);              \
    paddle::operators::math::SelectedRowsAddToTensor<dev_ctx_type, cpp_type> \
        functor;                                                             \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,      \
            dst_tensor);                                                     \
    return;                                                                  \
  }

#ifdef PADDLE_WITH_CUDA
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, double);
#ifdef PADDLE_WITH_CUDA
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD_TO_TENSOR

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static void SelectedRowsAddTensor(
    const framework::Variable& src_selected_rows_var,
    const framework::Variable& src_tensor_var,
    framework::Variable* dst_tensor_var) {
  const auto& src_selected_rows =
      src_selected_rows_var.Get<framework::SelectedRows>();
  const auto& src_tensor = src_tensor_var.Get<framework::LoDTensor>();
  const auto& place = src_tensor.place();
  auto data_type = src_tensor.type();
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);

  auto* dst_tensor = dst_tensor_var->GetMutable<framework::LoDTensor>();
  dst_tensor->Resize(src_tensor.dims());
  dst_tensor->mutable_data(place, data_type);

#define PADDLE_SELECTED_ROWS_ADD_TENSOR(dev_ctx_type, cpp_type)            \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {       \
    paddle::operators::math::SelectedRowsAddTensor<dev_ctx_type, cpp_type> \
        functor;                                                           \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,    \
            src_tensor, dst_tensor);                                       \
    return;                                                                \
  }

#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, double);
#ifdef PADDLE_WITH_CUDA
  }
#endif

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));

#undef PADDLE_SELECTED_ROWS_ADD_TENSOR
}

220 221 222
// Note(chenweihang): when two selected rows need to be added,
//   adding one to another is not equal to merging two selected rows
//   to one then add it to a empty selected rows, the after is correct
223 224
std::shared_ptr<VariableWrapper> SelectedRowsMerge(
    const framework::Variable& src1, const framework::Variable& src2) {
225 226 227 228 229 230 231 232 233
  auto& src_selected_rows1 = src1.Get<framework::SelectedRows>();
  auto& src_selected_rows2 = src2.Get<framework::SelectedRows>();
  auto place = src_selected_rows1.value().place();
  auto data_type = src_selected_rows1.value().type();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

  std::vector<const framework::SelectedRows*> src_selected_rows;
  src_selected_rows.emplace_back(&src_selected_rows1);
  src_selected_rows.emplace_back(&src_selected_rows2);
234
  auto dst_var = std::make_shared<VariableWrapper>("Temp");
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  auto* dst_selected_rows =
      dst_var->MutableVar()->GetMutable<framework::SelectedRows>();

#define PADDLE_SELECTED_ROWS_ADD(dev_ctx_type, cpp_type)                  \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {      \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);           \
    paddle::operators::math::scatter::MergeAdd<dev_ctx_type, cpp_type>    \
        merge_add;                                                        \
    merge_add(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows, \
              dst_selected_rows);                                         \
    return dst_var;                                                       \
  }

#ifdef PADDLE_WITH_CUDA
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, double);
#ifdef PADDLE_WITH_CUDA
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsMerge",
      framework::DataTypeToString(data_type)));
}

267
void VariableWrapperAdd(std::shared_ptr<VariableWrapper> var,
268
                        VariableWrapper* var_, bool unchange_input) {
269 270 271 272 273 274 275 276 277 278 279 280 281 282
  auto& src = var->Var();
  auto* dst = var_->MutableVar();
  if (dst->IsType<framework::LoDTensor>()) {
    if (src.IsType<framework::LoDTensor>()) {
      TensorAdd(src, dst);
    } else if (src.IsType<framework::SelectedRows>()) {
      SelectedRowsAddToTensor(src, dst);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  } else {
    if (src.IsType<framework::LoDTensor>()) {
283 284 285 286 287 288 289 290 291
      if (unchange_input) {
        framework::Variable new_dst;
        SelectedRowsAddTensor(*dst, src, &new_dst);
        *dst = std::move(new_dst);
      } else {
        auto* src_mutable = var->MutableVar();
        SelectedRowsAddToTensor(*dst, src_mutable);
        *dst = std::move(*(var->MutableVar()));
      }
292
    } else if (src.IsType<framework::SelectedRows>()) {
293
      auto temp = SelectedRowsMerge(src, *dst);
294 295 296 297 298 299 300 301 302
      *dst = std::move(*(temp->MutableVar()));
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  }
}

303 304
static platform::Place GetPlaceOfVar(
    const std::shared_ptr<VariableWrapper>& var) {
305 306 307 308 309 310 311 312 313 314 315 316
  platform::Place place;
  if (var->Var().IsType<framework::LoDTensor>()) {
    place = var->Var().Get<framework::LoDTensor>().place();
  } else if (var->Var().IsType<framework::SelectedRows>()) {
    place = var->Var().Get<framework::SelectedRows>().place();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "only support LoDTensor and SelectedRows in dygraph"));
  }
  return place;
}

317
void EagerGradientAccumulator::Add(std::shared_ptr<VariableWrapper> var,
318 319 320 321 322 323 324 325 326
                                   size_t trace_id, bool unchange_input) {
  /**
   * If var has grad node, it indicates that this var would be an input
   * of a grad op. Therefore, it should not be changed.
   */
  if (var->HasGradNode()) {
    unchange_input = true;
  }

J
Jiabin Yang 已提交
327
  auto* dst_var = var_->MutableVar();
328
  platform::Place place = GetPlaceOfVar(var);
329 330 331
  if (!var_->OverridedStopGradient()) {
    VLOG(3) << "Sum Gradient for: " << var_->Name();
    if (cur_cnt_ == 0) {
332
      MoveOrCopyVar(dst_var, var->MutableVar(), unchange_input);
333
    } else {
334
      VariableWrapperAdd(var, var_, unchange_input);
335
    }
J
Jiabin Yang 已提交
336
  } else {
337 338
    if (!var_->Var().IsInitialized() ||
        !var_->Var().Get<framework::LoDTensor>().IsInitialized()) {
339 340
      VLOG(6) << "Set StopGradient Grad: " << var_->Name() << " as zero ";

341
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
342 343 344 345 346 347 348 349 350 351 352 353
      if (!var_->Var().IsInitialized()) {
        auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << var_->Name() << " is set as: "
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      } else {
        auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
354
    }
J
Jiabin Yang 已提交
355 356
  }
  ++cur_cnt_;
357 358 359 360 361 362

  if (var_->Var().IsType<framework::LoDTensor>()) {
    var_->SetType(framework::proto::VarType::LOD_TENSOR);
  } else if (var_->Var().IsType<framework::SelectedRows>()) {
    var_->SetType(framework::proto::VarType::SELECTED_ROWS);
  }
J
Jiabin Yang 已提交
363 364
}

365
void SortedGradientAccumulator::Add(std::shared_ptr<VariableWrapper> var,
366
                                    size_t trace_id, bool unchange_input) {
J
Jiabin Yang 已提交
367
  auto* dst_var = var_->MutableVar();
368
  platform::Place place = GetPlaceOfVar(var);
369 370
  if (!var_->OverridedStopGradient()) {
    if (ref_cnt_ == 1) {
371 372
      MoveOrCopyVar(dst_var, var->MutableVar(),
                    unchange_input || var->HasGradNode());
373 374 375 376 377
    } else {
      if (tmp_grad_vars_.empty()) {
        tmp_grad_vars_.reserve(ref_cnt_);
      }

378
      tmp_grad_vars_.emplace_back(std::move(var), trace_id, unchange_input);
379 380 381 382 383

      if (tmp_grad_vars_.size() != ref_cnt_) {
        return;
      }

384 385 386 387 388 389 390 391 392 393
      std::sort(tmp_grad_vars_.begin(), tmp_grad_vars_.end(),
                [](const SavedVarInfo& info1, const SavedVarInfo& info2) {
                  return info1.trace_id > info2.trace_id;
                });

      for (auto& var_info : tmp_grad_vars_) {
        if (var_info.var->HasGradNode()) {
          var_info.unchange_input = true;
        }
      }
394

395 396 397 398
#ifdef PADDLE_WITH_CUDA
      if (paddle::platform::is_gpu_place(place)) {
        bool dst_varbase_is_initialized = false;
        // accumulate selected rows firstly
399 400 401
        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var->Var().IsType<framework::SelectedRows>()) {
            continue;
402
          }
403

404 405
          if (!dst_varbase_is_initialized) {
            dst_varbase_is_initialized = true;
406 407 408 409
            MoveOrCopyVar(dst_var, var_info.var->MutableVar(),
                          var_info.unchange_input);
          } else {
            VariableWrapperAdd(var_info.var, var_, var_info.unchange_input);
410
          }
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

          var_info.var = nullptr;
        }

        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }

          PADDLE_ENFORCE_EQ(var_info.var->Var().IsType<framework::LoDTensor>(),
                            true, platform::errors::PermissionDenied(
                                      "Gradient var must be LoDTensor"));

          if (!dst_varbase_is_initialized) {
            dst_varbase_is_initialized = true;
            MoveOrCopyVar(dst_var, var_info.var->MutableVar(),
                          var_info.unchange_input);
          } else {
            VariableWrapperAdd(var_info.var, var_, var_info.unchange_input);
430
          }
431 432

          var_info.var = nullptr;
433 434 435
        }
      } else {
#endif
436 437
        MoveOrCopyVar(dst_var, tmp_grad_vars_[0].var->MutableVar(),
                      tmp_grad_vars_[0].unchange_input);
438
        for (size_t i = 1; i < tmp_grad_vars_.size(); ++i) {
439 440 441
          VariableWrapperAdd(tmp_grad_vars_[i].var, var_,
                             tmp_grad_vars_[i].unchange_input);
          tmp_grad_vars_[i].var = nullptr;
442 443
        }
#ifdef PADDLE_WITH_CUDA
444
      }
445
#endif
446
      tmp_grad_vars_.clear();
J
Jiabin Yang 已提交
447
    }
448 449 450 451 452
  } else {
    if (!var_->Var().IsInitialized() ||
        !var_->Var().Get<framework::LoDTensor>().IsInitialized()) {
      VLOG(6) << "Set StopGradient Grad: " << var->Name() << " as zero";
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
453 454 455 456 457 458 459 460 461 462 463 464
      if (!var_->Var().IsInitialized()) {
        auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << var_->Name() << " is set as: "
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      } else {
        auto* tensor = var_->MutableVar()->GetMutable<framework::LoDTensor>();
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
J
Jiabin Yang 已提交
465
    }
466
    // looks like tmp_grad_vars will not have any member but just in case
J
Jiabin Yang 已提交
467 468
    tmp_grad_vars_.clear();
  }
469 470 471 472 473 474

  if (var_->Var().IsType<framework::LoDTensor>()) {
    var_->SetType(framework::proto::VarType::LOD_TENSOR);
  } else if (var_->Var().IsType<framework::SelectedRows>()) {
    var_->SetType(framework::proto::VarType::SELECTED_ROWS);
  }
J
Jiabin Yang 已提交
475 476 477 478
}

}  // namespace imperative
}  // namespace paddle