activation_op.cc 17.1 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/activation_op.h"

namespace paddle {
namespace operators {

Q
qijun 已提交
20 21 22 23 24
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
25
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
26 27
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Y");
Q
qijun 已提交
28
  }
Q
qijun 已提交
29 30
};

Q
qijun 已提交
31 32 33 34 35
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
36
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
37
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y"));
Q
qijun 已提交
38 39 40
  }
};

Q
qijun 已提交
41 42 43 44 45 46 47
class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(framework::OpProto *proto,
                 framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Sigmoid operator");
    AddOutput("Y", "Output of Sigmoid operator");
48
    AddComment("Sigmoid activation operator, sigmoid = 1 / (1 + exp(-x))");
Q
qijun 已提交
49 50 51
  }
};

52 53 54 55 56 57 58 59 60 61 62 63
class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LogSigmoidOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of LogSigmoid operator");
    AddOutput("Y", "Output of LogSigmoid operator");
    AddComment(
        "Logsigmoid activation operator, logsigmoid = log (1 / (1 + exp(-x)))");
  }
};

Q
qijun 已提交
64 65 66 67 68 69
class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ExpOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Exp operator");
    AddOutput("Y", "Output of Exp operator");
70
    AddComment("Exp activation operator, exp(x) = e^x");
Q
qijun 已提交
71 72 73 74 75 76 77 78 79
  }
};

class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Relu operator");
    AddOutput("Y", "Output of Relu operator");
80 81 82 83
    AddComment("Relu activation operator, relu(x) = max(x, 0)");
  }
};

K
Kavya Srinet 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
template <typename AttrType>
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LeakyReluOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of LeakyRelu operator");
    AddOutput("Y", "Output of LeakyRelu operator");
    AddComment(
        "LeakyRelu activation operator, "
        "leaky_relu = max(x, alpha * x)");
    AddAttr<AttrType>("alpha", "The small negative slope")
        .SetDefault(static_cast<AttrType>(0.02f));
  }
};

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
template <typename AttrType>
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SoftShrinkOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Y", "Output of Softshrink operator");
    AddComment(
        "Softshrink activation operator, "
        "softshrink = x - lambda, if x > lambda;"
        " x + lambda, if x < lambda; 0 otherwise");
    AddAttr<AttrType>("lambda", "non-negative offset")
        .SetDefault(static_cast<AttrType>(0.5f));
  }
};

117 118 119 120 121 122 123 124 125 126 127 128
class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  TanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Tanh operator");
    AddOutput("Y", "Output of Tanh operator");
    AddComment(
        "Tanh activation operator, tanh = (exp(x) - exp(-x)) / (exp(x) + "
        "exp(-x))");
  }
};

K
Kavya Srinet 已提交
129 130 131 132 133 134 135 136 137 138 139
class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  TanhShrinkOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of TanhShrink operator");
    AddOutput("Y", "Output of TanhShrink operator");
    AddComment("TanhShrink activation operator, tanhshrink(x) = x - tanh(x)");
  }
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename AttrType>
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  HardShrinkOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Y", "Output of HardShrink operator");
    AddComment(
        "HardShrink activation operator, "
        "hard_shrink(x) = x if x > lambda"
        "hard_shrink(x) = x if x < -lambda"
        "hard_shrink(x) = 0 otherwise");
    AddAttr<AttrType>("threshold", "The value of threshold for HardShrink")
        .SetDefault(static_cast<AttrType>(0.5));
  }
};

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SqrtOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Sqrt operator");
    AddOutput("Y", "Output of Sqrt operator");
    AddComment("Sqrt activation operator, sqrt(x) = x^(1/2)");
  }
};

class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  AbsOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Abs operator");
    AddOutput("Y", "Output of Abs operator");
    AddComment("Abs activation operator, abs(x) = |x|");
  }
};

class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReciprocalOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Reciprocal operator");
    AddOutput("Y", "Output of Reciprocal operator");
    AddComment("Reciprocal activation operator, reciprocal(x) = 1 / x");
  }
};

class LogOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LogOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Log operator");
    AddOutput("Y", "Output of Log operator");
    AddComment("Log activation operator, log(x) = natural logarithm of x");
  }
};

class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SquareOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Square operator");
    AddOutput("Y", "Output of Square operator");
    AddComment("Square activation operator, square(x) = x^2");
  }
};

K
kexinzhao 已提交
209 210 211 212 213 214 215 216 217 218 219
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SoftplusOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Softplus operator");
    AddOutput("Y", "Output of Softplus operator");
    AddComment("Softplus activation operator, softplus(x) = log(1 + exp(x))");
  }
};

220 221 222 223 224 225 226 227 228 229 230
class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SoftsignOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Softsign operator");
    AddOutput("Y", "Output of Softsign operator");
    AddComment("Softsign activation operator, softsign(x) = x / (1 + |x|)");
  }
};

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
template <typename AttrType>
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  BReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of BRelu operator");
    AddOutput("Y", "Output of BRelu operator");
    AddComment("BRelu activation operator, brelu = max(min(x, t_min), t_max)");
    AddAttr<AttrType>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<AttrType>(0));
    AddAttr<AttrType>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<AttrType>(24));
  }
};

template <typename AttrType>
class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SoftReluOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of SoftRelu operator");
    AddOutput("Y", "Output of SoftRelu operator");
    AddComment(
        "SoftRelu activation operator, soft_relu = log(1 + exp(max(min(x, "
        "threshold), threshold)))");
    AddAttr<AttrType>("threshold", "The threshold value of SoftRelu")
        .SetDefault(static_cast<AttrType>(40));
  }
};

262 263 264 265 266 267
template <typename AttrType>
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ELUOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
268 269 270 271 272 273 274
             "(Tensor) The input of ELU operator, it shouldn't be empty. Input "
             "is flattened and treated as a 1D array.");
    AddOutput("Y",
              "(Tensor) The output of ELU operator. It has the same shape as "
              "the input.");
    AddAttr<AttrType>(
        "alpha", "(float, default 1.0) Alpha value in the elu formulation.")
275
        .SetDefault(static_cast<AttrType>(1.));
276 277 278 279
    AddComment(R"DOC(
        ELU activation operator. It applies this element-wise computation on
        the input: f(x) = max(0, x) + min(0, alpha * (exp(x) - 1)).
        Check .. _Link: https://arxiv.org/abs/1511.07289 for more details.)DOC");
280 281 282
  }
};

283 284 285 286 287 288 289 290 291 292 293 294 295
template <typename AttrType>
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Relu6OpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Relu6 operator");
    AddOutput("Y", "Output of Relu6 operator");
    AddComment("Relu6 activation operator, relu6 = min(max(0, x), 6)");
    AddAttr<AttrType>("threshold", "The threshold value of Relu6")
        .SetDefault(static_cast<AttrType>(6));
  }
};

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
template <typename AttrType>
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  PowOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Pow operator");
    AddOutput("Y", "Output of Pow operator");
    AddComment("Pow activation operator, pow(x, factor) = x^factor");
    AddAttr<AttrType>("factor", "The exponential factor of Pow")
        .SetDefault(static_cast<AttrType>(1));
  }
};

template <typename AttrType>
class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  STanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of STanh operator");
    AddOutput("Y", "Output of STanh operator");
    AddComment("STanh activation operator, stanh = b * tanh(a * x)");
    AddAttr<AttrType>("scale_a", "The scale parameter of a for the input")
        .SetDefault(static_cast<AttrType>(2 / 3));
    AddAttr<AttrType>("scale_b", "The scale parameter of b for the input")
        .SetDefault(static_cast<AttrType>(1.7159));
Q
qijun 已提交
321 322 323
  }
};

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
template <typename AttrType>
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ThresholdedReluOpMaker(framework::OpProto *proto,
                         framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of ThresholdedRelu operator");
    AddOutput("Y", "Output of ThresholdedRelu operator");
    AddComment(
        "ThresholdedRelu activation operator, "
        "thresholded_relu = x for x > threshold, "
        "thresholded_relu = 0 otherwise.");
    AddAttr<AttrType>("threshold", "The threshold location of activation")
        .SetDefault(static_cast<AttrType>(1.0));
  }
};

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
template <typename AttrType>
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  HardSigmoidOpMaker(framework::OpProto *proto,
                     framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of HardSigmoid operator");
    AddOutput("Y", "Output of HardSigmoid operator");
    AddComment(R"DOC(
Hard Sigmoid activation operator.

Segment-wise linear approximation of sigmoid[1].
This is much faster than sigmoid.

hard_sigmoid = max(0, min(1, slope * x + shift))

The slope should be positive. The offset can be either positive or negative.
The default slope and shift are set from [1].
It is recommended to use the defaults for this activation.

References:
  [1] Noisy Activation Functions
      (https://arxiv.org/abs/1603.00391)

    )DOC");
    AddAttr<AttrType>("slope", "Slope for linear approximation of sigmoid")
        .SetDefault(static_cast<AttrType>(0.2));
    AddAttr<AttrType>("offset", "Offset for linear approximation of sigmoid")
        .SetDefault(static_cast<AttrType>(0.5));
  }
};

Q
qijun 已提交
373 374 375 376
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
377

Q
qijun 已提交
378 379 380
REGISTER_OP(sigmoid, ops::ActivationOp, ops::SigmoidOpMaker, sigmoid_grad,
            ops::ActivationOpGrad);

381 382 383
REGISTER_OP(logsigmoid, ops::ActivationOp, ops::LogSigmoidOpMaker,
            logsigmoid_grad, ops::ActivationOpGrad);

Q
qijun 已提交
384 385
REGISTER_OP(exp, ops::ActivationOp, ops::ExpOpMaker, exp_grad,
            ops::ActivationOpGrad);
Q
qijun 已提交
386 387 388

REGISTER_OP(relu, ops::ActivationOp, ops::ReluOpMaker, relu_grad,
            ops::ActivationOpGrad);
389 390 391 392

REGISTER_OP(tanh, ops::ActivationOp, ops::TanhOpMaker, tanh_grad,
            ops::ActivationOpGrad);

K
Kavya Srinet 已提交
393 394
REGISTER_OP(tanh_shrink, ops::ActivationOp, ops::TanhShrinkOpMaker,
            tanh_shrink_grad, ops::ActivationOpGrad);
395

396 397 398
REGISTER_OP(softshrink, ops::ActivationOp, ops::SoftShrinkOpMaker<float>,
            softshrink_grad, ops::ActivationOpGrad);

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
REGISTER_OP(sqrt, ops::ActivationOp, ops::SqrtOpMaker, sqrt_grad,
            ops::ActivationOpGrad);

REGISTER_OP(abs, ops::ActivationOp, ops::AbsOpMaker, abs_grad,
            ops::ActivationOpGrad);

REGISTER_OP(reciprocal, ops::ActivationOp, ops::ReciprocalOpMaker,
            reciprocal_grad, ops::ActivationOpGrad);

REGISTER_OP(log, ops::ActivationOp, ops::LogOpMaker, log_grad,
            ops::ActivationOpGrad);

REGISTER_OP(square, ops::ActivationOp, ops::SquareOpMaker, square_grad,
            ops::ActivationOpGrad);

K
kexinzhao 已提交
414 415 416
REGISTER_OP(softplus, ops::ActivationOp, ops::SoftplusOpMaker, softplus_grad,
            ops::ActivationOpGrad);

417 418 419
REGISTER_OP(softsign, ops::ActivationOp, ops::SoftsignOpMaker, softsign_grad,
            ops::ActivationOpGrad);

420 421 422
REGISTER_OP(brelu, ops::ActivationOp, ops::BReluOpMaker<float>, brelu_grad,
            ops::ActivationOpGrad);

K
Kavya Srinet 已提交
423 424
REGISTER_OP(leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker<float>,
            leaky_relu_grad, ops::ActivationOpGrad);
425 426 427 428

REGISTER_OP(soft_relu, ops::ActivationOp, ops::SoftReluOpMaker<float>,
            soft_relu_grad, ops::ActivationOpGrad);

429 430 431
REGISTER_OP(elu, ops::ActivationOp, ops::ELUOpMaker<float>, elu_grad,
            ops::ActivationOpGrad);

432 433 434
REGISTER_OP(relu6, ops::ActivationOp, ops::Relu6OpMaker<float>, relu6_grad,
            ops::ActivationOpGrad);

435 436 437 438 439
REGISTER_OP(pow, ops::ActivationOp, ops::PowOpMaker<float>, pow_grad,
            ops::ActivationOpGrad);

REGISTER_OP(stanh, ops::ActivationOp, ops::STanhOpMaker<float>, stanh_grad,
            ops::ActivationOpGrad);
440

441 442 443
REGISTER_OP(hard_shrink, ops::ActivationOp, ops::HardShrinkOpMaker<float>,
            hard_shrink_grad, ops::ActivationOpGrad);

444 445 446 447
REGISTER_OP(thresholded_relu, ops::ActivationOp,
            ops::ThresholdedReluOpMaker<float>, thresholded_relu_grad,
            ops::ActivationOpGrad);

448 449 450
REGISTER_OP(hard_sigmoid, ops::ActivationOp, ops::HardSigmoidOpMaker<float>,
            hard_sigmoid_grad, ops::ActivationOpGrad);

451 452 453
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor)        \
  REGISTER_OP_CPU_KERNEL(                                                      \
      act_type,                                                                \
454
      ops::ActivationKernel<paddle::platform::CPUPlace, ops::functor<float>>); \
455
  REGISTER_OP_CPU_KERNEL(act_type##_grad,                                      \
456 457
                         ops::ActivationGradKernel<paddle::platform::CPUPlace, \
                                                   ops::grad_functor<float>>);
458 459

FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL);