dist_mnist.py 4.0 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

T
typhoonzero 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main
32
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
T
typhoonzero 已提交
33

P
pangyoki 已提交
34 35
paddle.enable_static()

T
typhoonzero 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
W
Wu Yi 已提交
52
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
53
            value=0.01)))
T
typhoonzero 已提交
54 55 56 57 58 59 60
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
W
Wu Yi 已提交
61
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
62
            value=0.01)))
T
typhoonzero 已提交
63 64 65 66 67 68 69 70 71 72 73

    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
74
            initializer=fluid.initializer.Constant(value=0.01)))
T
typhoonzero 已提交
75 76 77 78
    return predict


class TestDistMnist2x2(TestDistRunnerBase):
79
    def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None):
T
typhoonzero 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        # Input data
        images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        # Train program
        predict = cnn_model(images)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        # Evaluator
        batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
        batch_acc = fluid.layers.accuracy(
            input=predict, label=label, total=batch_size_tensor)

        inference_program = fluid.default_main_program().clone()
        # Optimization
W
Wu Yi 已提交
96 97 98
        # TODO(typhoonzero): fix distributed adam optimizer
        # opt = fluid.optimizer.AdamOptimizer(
        #     learning_rate=0.001, beta1=0.9, beta2=0.999)
99 100 101 102
        if not use_dgc:
            opt = fluid.optimizer.Momentum(learning_rate=self.lr, momentum=0.9)
        else:
            opt = fluid.optimizer.DGCMomentumOptimizer(
103
                learning_rate=self.lr, momentum=0.9, rampup_begin_step=2)
T
typhoonzero 已提交
104 105 106

        # Reader
        train_reader = paddle.batch(
107
            paddle.dataset.mnist.test(), batch_size=batch_size)
T
typhoonzero 已提交
108 109
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
110 111 112 113 114 115 116 117

        if dist_strategy:
            dist_opt = fleet.distributed_optimizer(
                optimizer=opt, strategy=dist_strategy)
            _, param_grads = dist_opt.minimize(avg_cost)
        else:
            opt.minimize(avg_cost)

T
typhoonzero 已提交
118 119 120 121 122
        return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


if __name__ == "__main__":
    runtime_main(TestDistMnist2x2)