dist_mnist.py 3.6 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

T
typhoonzero 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main

DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
W
Wu Yi 已提交
49
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
50
            value=0.01)))
T
typhoonzero 已提交
51 52 53 54 55 56 57
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
W
Wu Yi 已提交
58
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
59
            value=0.01)))
T
typhoonzero 已提交
60 61 62 63 64 65 66 67 68 69 70

    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
71
            initializer=fluid.initializer.Constant(value=0.01)))
T
typhoonzero 已提交
72 73 74 75
    return predict


class TestDistMnist2x2(TestDistRunnerBase):
76
    def get_model(self, batch_size=2, use_dgc=False):
T
typhoonzero 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        # Input data
        images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        # Train program
        predict = cnn_model(images)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        # Evaluator
        batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
        batch_acc = fluid.layers.accuracy(
            input=predict, label=label, total=batch_size_tensor)

        inference_program = fluid.default_main_program().clone()
        # Optimization
W
Wu Yi 已提交
93 94 95
        # TODO(typhoonzero): fix distributed adam optimizer
        # opt = fluid.optimizer.AdamOptimizer(
        #     learning_rate=0.001, beta1=0.9, beta2=0.999)
96 97 98 99 100
        if not use_dgc:
            opt = fluid.optimizer.Momentum(learning_rate=self.lr, momentum=0.9)
        else:
            opt = fluid.optimizer.DGCMomentumOptimizer(
                learning_rate=self.lr, momentum=0.9, rampup_begin_step=0)
T
typhoonzero 已提交
101 102 103

        # Reader
        train_reader = paddle.batch(
104
            paddle.dataset.mnist.test(), batch_size=batch_size)
T
typhoonzero 已提交
105 106 107 108 109 110 111 112
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
        opt.minimize(avg_cost)
        return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


if __name__ == "__main__":
    runtime_main(TestDistMnist2x2)