test_gradient_clip.py 23.8 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chengduo 已提交
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chengduo 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
22 23
import six
from fake_reader import fake_imdb_reader
24
from paddle.fluid.clip import _allow_pure_fp16_global_norm_clip
C
chengduo 已提交
25

W
WangXi 已提交
26 27
paddle.enable_static()

C
chengduo 已提交
28

29 30 31
def bow_net(
    data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2
):
C
chengduo 已提交
32 33 34 35 36
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
37 38 39
    emb = fluid.layers.embedding(
        input=data, is_sparse=True, size=[dict_dim, emb_dim]
    )
C
chengduo 已提交
40 41 42 43 44 45
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
46
    avg_cost = paddle.mean(x=cost)
C
chengduo 已提交
47 48 49 50 51 52

    return avg_cost


class TestGradientClip(unittest.TestCase):
    def setUp(self):
53
        self.word_dict_len = 5147
C
chengduo 已提交
54
        self.BATCH_SIZE = 2
55 56
        reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
        self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
57
        self.clip_gradient = lambda x: None
58 59 60 61
        self.init()

    def init(self):
        pass
C
chengduo 已提交
62 63

    def get_places(self):
64
        places = [fluid.CPUPlace()]
C
chengduo 已提交
65
        if core.is_compiled_with_cuda():
66
            places.append(fluid.CUDAPlace(0))
C
chengduo 已提交
67 68
        return places

69 70 71
    def check_clip_result(self, out, out_clip):
        pass

72
    def check_gradient_clip(self, place, dtype='float32'):
73 74
        prog = fluid.Program()
        startup_program = fluid.Program()
75 76 77
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
78 79
            image = fluid.data(name="a", shape=[-1, 784], dtype='float32')
            label = fluid.data(name="b", shape=[-1, 1], dtype='int64')
80 81 82 83 84
            if dtype != 'float32':
                image_cast = paddle.cast(image, dtype)
                hidden = fluid.layers.fc(input=image_cast, size=32, act='relu')
            else:
                hidden = fluid.layers.fc(input=image, size=32, act='relu')
85
            predict = fluid.layers.fc(input=hidden, size=10, act='softmax')
C
chengduo 已提交
86 87

            cost = fluid.layers.cross_entropy(input=predict, label=label)
88
            avg_cost = paddle.mean(cost)
C
chengduo 已提交
89 90 91 92 93 94 95

        prog_clip = prog.clone()
        avg_cost_clip = prog_clip.block(0).var(avg_cost.name)

        p_g = fluid.backward.append_backward(loss=avg_cost)
        p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

96 97
        p_g = sorted(p_g, key=lambda x: x[0].name)
        p_g_clip = sorted(p_g_clip, key=lambda x: x[0].name)
98 99 100
        with fluid.program_guard(
            main_program=prog_clip, startup_program=startup_program
        ):
101
            p_g_clip = self.clip_gradient(p_g_clip)
C
chengduo 已提交
102 103 104 105

        grad_list = [elem[1] for elem in p_g]
        grad_clip_list = [elem[1] for elem in p_g_clip]

106
        train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=3)
C
chengduo 已提交
107 108 109 110
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
        exe.run(startup_program)

111 112
        data = next(train_reader())
        out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
113 114 115
        out_clip = exe.run(
            prog_clip, feed=feeder.feed(data), fetch_list=grad_clip_list
        )
116
        self.check_clip_result(out, out_clip)
C
chengduo 已提交
117 118

    def check_sparse_gradient_clip(self, place):
119 120
        prog = fluid.Program()
        startup_program = fluid.Program()
121 122 123 124 125 126
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
            data = fluid.data(
                name="words", shape=[-1, 1], dtype="int64", lod_level=1
            )
127
            label = fluid.data(name="label", shape=[-1, 1], dtype="int64")
128
            cost = bow_net(data, label, self.word_dict_len)
C
chengduo 已提交
129

130
            self.backward_and_optimize(cost)
C
chengduo 已提交
131 132 133 134 135 136 137

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
        exe.run(startup_program)

        data = next(self.train_data())
        val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
138
        self.assertEqual((1,), val.shape)
C
chengduo 已提交
139 140
        self.assertFalse(np.isnan(val))

141
    def backward_and_optimize(self, cost):
142 143 144 145 146 147 148 149 150 151
        pass


class TestGradientClipByGlobalNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        global_norm = 0
        for v in out:
W
WangXi 已提交
152
            global_norm += np.sum(np.square(v))
153 154 155 156 157 158 159
        global_norm = np.sqrt(global_norm)
        scale = self.clip_norm / np.maximum(self.clip_norm, global_norm)
        res = []
        for i in range(len(out)):
            out[i] = scale * out[i]

        for u, v in zip(out, out_clip):
160 161 162 163 164
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
165 166 167 168
                err_msg='gradient clip by global norm has wrong results!, \nu={}\nv={}\ndiff={}'.format(
                    u, v, u - v
                ),
            )
169

170
    # test whether the output is right when use 'set_gradient_clip'
171 172 173 174 175 176 177 178 179
    def test_old_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            fluid.clip.set_gradient_clip(clip)
            return fluid.clip.append_gradient_clip_ops(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

180
    # test whether the output is right when use grad_clip
181 182 183 184
    def test_new_gradient_clip(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)
C
chengduo 已提交
185

186 187 188
        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

189
    # test whether the output is right when use grad_clip under float64
190 191 192 193 194 195 196 197
    def test_new_gradient_clip_fp64(self):
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace(), "float64")

198 199 200
    # invoke 'set_gradient_clip' in a wrong order
    def test_wrong_API_order(self):
        def backward_func(cost):
201
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
202
            fluid.clip.set_gradient_clip(clip)
203 204 205
            sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=0.01, grad_clip=clip
            )
206 207
            # if 'set_gradient_clip' and 'optimize(grad_clip)' together, 'set_gradient_clip' will be ineffective
            sgd_optimizer.minimize(cost)
208 209 210 211
            # 'set_gradient_clip' must before 'minimize', otherwise, 'set_gradient_clip' will be ineffective
            fluid.clip.set_gradient_clip(clip)

        self.backward_and_optimize = backward_func
C
chengduo 已提交
212 213 214
        for place in self.get_places():
            self.check_sparse_gradient_clip(place)

215 216
    # raise typeError
    def test_tpyeError(self):
217
        # the type of optimizer(grad_clip=) must be an instance of GradientClipBase's derived class
218
        with self.assertRaises(TypeError):
219 220 221
            sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=0.1, grad_clip="test"
            )
222

223 224 225
    # if grad is None or not need clip
    def test_none_grad_fp32(self):
        ops = self._test_none_grad_helper("float32")
226 227 228 229 230 231 232 233 234 235 236 237 238 239
        self.assertListEqual(
            ops,
            [
                'squared_l2_norm',
                'squared_l2_norm',
                'sum',
                'sqrt',
                'fill_constant',
                'elementwise_max',
                'elementwise_div',
                'elementwise_mul',
                'elementwise_mul',
            ],
        )
240 241 242

    def test_none_grad_fp16(self):
        ops = self._test_none_grad_helper("float16")
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        self.assertListEqual(
            ops,
            [
                'squared_l2_norm',
                'squared_l2_norm',
                'sum',
                'cast',
                'sqrt',
                'fill_constant',
                'elementwise_max',
                'elementwise_div',
                'cast',
                'elementwise_mul',
                'cast',
                'elementwise_mul',
            ],
        )
260 261 262 263

    def _test_none_grad_helper(self, dtype):
        prog = fluid.Program()
        startup_program = fluid.Program()
264 265 266
        with fluid.program_guard(
            main_program=prog, startup_program=startup_program
        ):
267
            clip = fluid.clip.GradientClipByGlobalNorm(self.clip_norm)
268 269 270 271 272 273 274 275 276 277
            x = (
                fluid.default_main_program()
                .global_block()
                .create_parameter(name="x", shape=[2, 3], dtype=dtype)
            )
            y = (
                fluid.default_main_program()
                .global_block()
                .create_parameter(name="y", shape=[2, 3], dtype=dtype)
            )
278 279 280 281 282 283

            # (x, None) should not be returned
            params_grads = [(x, None), (x, y), (y, x)]
            params_grads = clip(params_grads)
            self.assertTrue(
                len(params_grads) == 2,
284
                "ClipByGlobalNorm: when grad is None, it shouldn't be returned by gradient clip!",
285 286 287 288 289
            )

            ops = [op.type for op in x.block.ops]
        return ops

290 291 292 293 294 295 296 297 298 299

class TestGradientClipByNorm(TestGradientClip):
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        for u, v in zip(out, out_clip):
            norm = np.sqrt(np.sum(np.power(u, 2)))
            scale = self.clip_norm / np.maximum(self.clip_norm, norm)
            u = u * scale
300 301 302 303 304
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
305 306
                err_msg='gradient clip by norm has wrong results!',
            )
307

308
    # test whether the output is right when use grad_clip
309
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
310 311 312 313 314
        def func(params_grads):
            clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
315 316 317 318
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
319
        clip = fluid.clip.GradientClipByNorm(self.clip_norm)
320 321 322 323 324 325 326 327 328 329 330 331 332 333
        x = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="x", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
        y = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="y", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
334 335 336 337 338 339

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
340
            "ClipGradByNorm: when grad is None, it shouldn't be returned by gradient clip!",
341 342 343
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
344 345
            "ClipGradByNorm: grad should not be clipped when filtered out!",
        )
346 347 348 349 350 351 352 353 354 355 356 357


class TestGradientClipByValue(TestGradientClip):
    def init(self):
        self.max = 0.2
        self.min = 0.1

    def check_clip_result(self, out, out_clip):
        for i, v in enumerate(out):
            out[i] = np.clip(v, self.min, self.max)
        for u, v in zip(out, out_clip):
            u = np.clip(u, self.min, self.max)
358 359 360 361 362
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
363 364
                err_msg='gradient clip by value has wrong results!',
            )
365

366
    # test whether the output is right when use grad_clip
367
    def test_gradient_clip(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
368 369 370 371 372
        def func(params_grads):
            clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
            return clip(params_grads)

        self.clip_gradient = func
373 374 375 376
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
377
        clip = fluid.clip.GradientClipByValue(self.max, self.min)
378 379 380 381 382 383 384 385 386 387 388 389 390 391
        x = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="x", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
        y = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                name="y", shape=[2, 3], dtype="float32", need_clip=False
            )
        )
392 393 394 395 396 397

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
398
            "ClipGradByValue: when grad is None, it shouldn't be returned by gradient clip!",
399 400 401
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
402 403
            "ClipGradByValue: grad should not be clipped when filtered out!",
        )
404 405 406 407 408 409


class TestDygraphGradientClip(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
            linear = fluid.dygraph.Linear(5, 5)
410 411 412
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10
            ).astype('float32')
413 414 415 416
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            sgd_optimizer = fluid.optimizer.SGD(
417 418
                learning_rate=0.0,
                parameter_list=linear.parameters(),
419 420
                grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1),
            )
421 422 423 424 425 426 427 428 429 430
            self.check_clip_result(loss, sgd_optimizer)

    def check_clip_result(self, loss, optimizer):
        pass


class TestDygraphGradientClipByGlobalNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
        self.clip1 = fluid.clip.GradientClipByGlobalNorm(
431 432
            clip_norm=self.clip_norm
        )
433
        self.clip2 = fluid.clip.GradientClipByGlobalNorm(
434 435
            clip_norm=self.clip_norm
        )
436 437 438

    def check_clip_result(self, loss, optimizer):
        # if grad is None
439 440 441 442 443 444
        x = fluid.dygraph.to_variable(
            np.array([2, 3]).astype("float32"), name="x"
        )
        y = fluid.dygraph.to_variable(
            np.array([3, 4]).astype("float32"), name="y"
        )
445 446
        assert len(self.clip1([(x, x), (x, y), (x, None)])) == 2
        # get params and grads from network
447
        opt, params_grads = optimizer.minimize(loss)
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        _, grads = zip(*params_grads)
        params_grads = self.clip2(params_grads)
        _, grads_clip = zip(*params_grads)

        global_norm = 0
        for u in grads:
            u = u.numpy()
            global_norm += np.sum(np.power(u, 2))
        global_norm = np.sqrt(global_norm)

        global_norm_clip = 0
        for v in grads_clip:
            v = v.numpy()
            global_norm_clip += np.sum(np.power(v, 2))
        global_norm_clip = np.sqrt(global_norm_clip)

        a = np.minimum(global_norm, self.clip_norm)
        b = global_norm_clip
        self.assertTrue(
467
            np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
468
            "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
469 470
            % (a, b),
        )
471 472 473 474 475


class TestDygraphGradientClipByNorm(TestDygraphGradientClip):
    def setUp(self):
        self.clip_norm = 0.8
476
        self.clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
477 478 479 480 481 482 483

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
        self.clip([(fluid.dygraph.to_variable(np.array([2, 3])), None)])
484
        opt, params_grads = optimizer.minimize(loss)
485 486 487 488 489 490 491 492 493 494 495
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)

        for u, v in zip(grads, grads_clip):
            u = u.numpy()
            v = v.numpy()
            a = np.sqrt(np.sum(np.power(u, 2)))
            a = np.minimum(a, self.clip_norm)
            b = np.sqrt(np.sum(np.power(v, 2)))
            self.assertTrue(
496
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
497
                "gradient clip by norm has wrong results, expetcd:%f, but received:%f"
498 499
                % (a, b),
            )
500 501 502 503 504 505


class TestDygraphGradientClipByValue(TestDygraphGradientClip):
    def setUp(self):
        self.max = 0.2
        self.min = 0.1
506
        self.clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
507 508 509 510 511 512

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
513
        opt, params_grads = optimizer.minimize(loss)
514 515 516 517 518 519
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)
        for u, v in zip(grads, grads_clip):
            u = np.clip(u.numpy(), self.min, self.max)
            v = v.numpy()
520 521 522 523 524
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
525 526
                err_msg='gradient clip by value has wrong results!',
            )
527

C
chengduo 已提交
528

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
class SimpleNet(paddle.nn.Layer):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.linear = paddle.nn.Linear(5, 5)
        self.batch_norm = paddle.nn.BatchNorm(5)

    def forward(self, x):
        x = self.linear(x)
        x = self.batch_norm(x)
        return x


class TestDygraphGradientClipFP16(unittest.TestCase):
    def test_gradient_clip(self):
        if fluid.core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                paddle.seed(10)
                model = SimpleNet()
                sgd_optimizer = paddle.optimizer.SGD(
548 549
                    learning_rate=0.0, parameters=model.parameters()
                )
550
                model, sgd_optimizer = paddle.amp.decorate(
551 552
                    models=model, optimizers=sgd_optimizer, level='O2'
                )
553
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
554 555 556
                inputs = fluid.layers.uniform_random(
                    [1, 5], min=-10, max=10
                ).astype('float32')
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
                with paddle.amp.auto_cast(level='O2'):
                    out = model(fluid.dygraph.to_variable(inputs))
                    loss = fluid.layers.reduce_mean(out)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.unscale_(sgd_optimizer)
                # before clip
                params_grads = []
                for param in model.parameters():
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        params_grads.append((param, param._grad_ivar()))
                _, grads = zip(*params_grads)
                # clip grads
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.8)
                params_grads = clip(params_grads)
                _, grads_clip = zip(*params_grads)
575
                # param update
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
                scaler.step(sgd_optimizer)
                scaler.update()

                global_norm = 0
                for u in grads:
                    u = u.numpy()
                    global_norm += np.sum(np.power(u, 2))
                global_norm = np.sqrt(global_norm)
                global_norm_clip = 0
                for v in grads_clip:
                    v = v.numpy()
                    global_norm_clip += np.sum(np.power(v, 2))
                global_norm_clip = np.sqrt(global_norm_clip)

                a = np.minimum(global_norm, 0.8)
                b = global_norm_clip
                self.assertTrue(
593
                    np.isclose(a=a, b=b, rtol=1e-3, atol=1e-8),
594
                    "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
595 596
                    % (a, b),
                )
597 598 599 600 601


class TestDygraphGradientClipFP64(unittest.TestCase):
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
602 603 604
            inputs = fluid.layers.uniform_random(
                [16, 5], min=-10, max=10
            ).astype('float64')
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
            linear = fluid.dygraph.Linear(5, 5, dtype="float64")
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            # before clip
            params_grads = []
            for param in linear.parameters():
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    params_grads.append((param, param._grad_ivar()))
            _, grads = zip(*params_grads)
            # clip grads
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.1)
            params_grads = clip(params_grads)
            _, grads_clip = zip(*params_grads)

            global_norm = 0
            for u in grads:
                u = u.numpy()
                global_norm += np.sum(np.power(u, 2))
            global_norm = np.sqrt(global_norm)

            global_norm_clip = 0
            for v in grads_clip:
                v = v.numpy()
                print(v)
                global_norm_clip += np.sum(np.power(v, 2))
            global_norm_clip = np.sqrt(global_norm_clip)
            print(global_norm_clip)

            a = np.minimum(global_norm, 0.1)
            b = global_norm_clip

            self.assertTrue(
640
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
641
                "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
642 643
                % (a, b),
            )
644 645


646 647 648 649 650 651 652 653 654 655 656
class TestPureFP16ClipGradByGlobalNorm(unittest.TestCase):
    def check_main(self, expected_has_cast_op):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            names = ["p0", "p1"]
            shapes = [[2, 3], [4, 5]]

            param_and_grads = []
            main_block = main_prog.global_block()
            for name, shape in zip(names, shapes):
657 658 659 660 661 662
                p = main_block.create_parameter(
                    name=name, shape=shape, dtype='float16'
                )
                g = main_block.create_parameter(
                    name=p.name + '@GRAD', shape=p.shape, dtype=p.dtype
                )
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
                param_and_grads.append((p, g))

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            clip(param_and_grads)
            actual_has_cast = any(op.type == 'cast' for op in main_block.ops)
            self.assertEqual(actual_has_cast, expected_has_cast_op)

    def test_main(self):
        self.check_main(True)
        _allow_pure_fp16_global_norm_clip(True)
        self.check_main(False)
        _allow_pure_fp16_global_norm_clip(False)
        self.check_main(True)


C
chengduo 已提交
678 679
if __name__ == '__main__':
    unittest.main()