test_gradient_clip.py 23.4 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chengduo 已提交
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chengduo 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
22 23
import six
from fake_reader import fake_imdb_reader
24
from paddle.fluid.clip import _allow_pure_fp16_global_norm_clip
C
chengduo 已提交
25

W
WangXi 已提交
26 27
paddle.enable_static()

C
chengduo 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40

def bow_net(data,
            label,
            dict_dim,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
41 42 43
    emb = fluid.layers.embedding(input=data,
                                 is_sparse=True,
                                 size=[dict_dim, emb_dim])
C
chengduo 已提交
44 45 46 47 48 49
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
50
    avg_cost = paddle.mean(x=cost)
C
chengduo 已提交
51 52 53 54 55

    return avg_cost


class TestGradientClip(unittest.TestCase):
56

C
chengduo 已提交
57
    def setUp(self):
58
        self.word_dict_len = 5147
C
chengduo 已提交
59
        self.BATCH_SIZE = 2
60 61
        reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
        self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
62
        self.clip_gradient = lambda x: None
63 64 65 66
        self.init()

    def init(self):
        pass
C
chengduo 已提交
67 68

    def get_places(self):
69
        places = [fluid.CPUPlace()]
C
chengduo 已提交
70
        if core.is_compiled_with_cuda():
71
            places.append(fluid.CUDAPlace(0))
C
chengduo 已提交
72 73
        return places

74 75 76
    def check_clip_result(self, out, out_clip):
        pass

77
    def check_gradient_clip(self, place, dtype='float32'):
78 79
        prog = fluid.Program()
        startup_program = fluid.Program()
80 81
        with fluid.program_guard(main_program=prog,
                                 startup_program=startup_program):
82 83
            image = fluid.data(name="a", shape=[-1, 784], dtype='float32')
            label = fluid.data(name="b", shape=[-1, 1], dtype='int64')
84 85 86 87 88
            if dtype != 'float32':
                image_cast = paddle.cast(image, dtype)
                hidden = fluid.layers.fc(input=image_cast, size=32, act='relu')
            else:
                hidden = fluid.layers.fc(input=image, size=32, act='relu')
89
            predict = fluid.layers.fc(input=hidden, size=10, act='softmax')
C
chengduo 已提交
90 91

            cost = fluid.layers.cross_entropy(input=predict, label=label)
92
            avg_cost = paddle.mean(cost)
C
chengduo 已提交
93 94 95 96 97 98 99

        prog_clip = prog.clone()
        avg_cost_clip = prog_clip.block(0).var(avg_cost.name)

        p_g = fluid.backward.append_backward(loss=avg_cost)
        p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

100 101
        p_g = sorted(p_g, key=lambda x: x[0].name)
        p_g_clip = sorted(p_g_clip, key=lambda x: x[0].name)
102 103
        with fluid.program_guard(main_program=prog_clip,
                                 startup_program=startup_program):
104
            p_g_clip = self.clip_gradient(p_g_clip)
C
chengduo 已提交
105 106 107 108

        grad_list = [elem[1] for elem in p_g]
        grad_clip_list = [elem[1] for elem in p_g_clip]

109
        train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=3)
C
chengduo 已提交
110 111 112 113
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
        exe.run(startup_program)

114 115 116 117 118 119
        data = next(train_reader())
        out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
        out_clip = exe.run(prog_clip,
                           feed=feeder.feed(data),
                           fetch_list=grad_clip_list)
        self.check_clip_result(out, out_clip)
C
chengduo 已提交
120 121

    def check_sparse_gradient_clip(self, place):
122 123
        prog = fluid.Program()
        startup_program = fluid.Program()
124 125 126 127 128 129
        with fluid.program_guard(main_program=prog,
                                 startup_program=startup_program):
            data = fluid.data(name="words",
                              shape=[-1, 1],
                              dtype="int64",
                              lod_level=1)
130
            label = fluid.data(name="label", shape=[-1, 1], dtype="int64")
131
            cost = bow_net(data, label, self.word_dict_len)
C
chengduo 已提交
132

133
            self.backward_and_optimize(cost)
C
chengduo 已提交
134 135 136 137 138 139 140 141 142 143

        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
        exe.run(startup_program)

        data = next(self.train_data())
        val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
        self.assertEqual((1, ), val.shape)
        self.assertFalse(np.isnan(val))

144
    def backward_and_optimize(self, cost):
145 146 147 148
        pass


class TestGradientClipByGlobalNorm(TestGradientClip):
149

150 151 152 153 154 155
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        global_norm = 0
        for v in out:
W
WangXi 已提交
156
            global_norm += np.sum(np.square(v))
157 158 159 160 161 162 163
        global_norm = np.sqrt(global_norm)
        scale = self.clip_norm / np.maximum(self.clip_norm, global_norm)
        res = []
        for i in range(len(out)):
            out[i] = scale * out[i]

        for u, v in zip(out, out_clip):
164 165 166 167 168 169 170
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
                err_msg=
                'gradient clip by global norm has wrong results!, \nu={}\nv={}\ndiff={}'
171
                .format(u, v, u - v))
172

173
    # test whether the output is right when use 'set_gradient_clip'
174
    def test_old_gradient_clip(self):
175

176 177 178 179 180 181 182 183
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            fluid.clip.set_gradient_clip(clip)
            return fluid.clip.append_gradient_clip_ops(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

184
    # test whether the output is right when use grad_clip
185
    def test_new_gradient_clip(self):
186

187 188 189
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)
C
chengduo 已提交
190

191 192 193
        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace())

194
    # test whether the output is right when use grad_clip under float64
195
    def test_new_gradient_clip_fp64(self):
196

197 198 199 200 201 202 203
        def func(params_grads):
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
        self.check_gradient_clip(fluid.CPUPlace(), "float64")

204 205
    # invoke 'set_gradient_clip' in a wrong order
    def test_wrong_API_order(self):
206

207
        def backward_func(cost):
208
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
209
            fluid.clip.set_gradient_clip(clip)
210 211 212 213
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01,
                                                grad_clip=clip)
            # if 'set_gradient_clip' and 'optimize(grad_clip)' together, 'set_gradient_clip' will be ineffective
            sgd_optimizer.minimize(cost)
214 215 216 217
            # 'set_gradient_clip' must before 'minimize', otherwise, 'set_gradient_clip' will be ineffective
            fluid.clip.set_gradient_clip(clip)

        self.backward_and_optimize = backward_func
C
chengduo 已提交
218 219 220
        for place in self.get_places():
            self.check_sparse_gradient_clip(place)

221 222
    # raise typeError
    def test_tpyeError(self):
223
        # the type of optimizer(grad_clip=) must be an instance of GradientClipBase's derived class
224
        with self.assertRaises(TypeError):
225 226
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1,
                                                grad_clip="test")
227

228 229 230 231
    # if grad is None or not need clip
    def test_none_grad_fp32(self):
        ops = self._test_none_grad_helper("float32")
        self.assertListEqual(ops, [
232
            'squared_l2_norm', 'squared_l2_norm', 'sum', 'sqrt',
233 234 235 236 237 238 239 240
            'fill_constant', 'elementwise_max', 'elementwise_div',
            'elementwise_mul', 'elementwise_mul'
        ])

    def test_none_grad_fp16(self):
        ops = self._test_none_grad_helper("float16")
        self.assertListEqual(ops, [
            'square', 'reduce_sum', 'square', 'reduce_sum', 'sum', 'cast',
241 242
            'sqrt', 'fill_constant', 'elementwise_max', 'elementwise_div',
            'cast', 'elementwise_mul', 'cast', 'elementwise_mul'
243 244 245 246 247
        ])

    def _test_none_grad_helper(self, dtype):
        prog = fluid.Program()
        startup_program = fluid.Program()
248 249
        with fluid.program_guard(main_program=prog,
                                 startup_program=startup_program):
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
            clip = fluid.clip.GradientClipByGlobalNorm(self.clip_norm)
            x = fluid.default_main_program().global_block().create_parameter(
                name="x", shape=[2, 3], dtype=dtype)
            y = fluid.default_main_program().global_block().create_parameter(
                name="y", shape=[2, 3], dtype=dtype)

            # (x, None) should not be returned
            params_grads = [(x, None), (x, y), (y, x)]
            params_grads = clip(params_grads)
            self.assertTrue(
                len(params_grads) == 2,
                "ClipByGlobalNorm: when grad is None, it shouldn't be returned by gradient clip!"
            )

            ops = [op.type for op in x.block.ops]
        return ops

267 268

class TestGradientClipByNorm(TestGradientClip):
269

270 271 272 273 274 275 276 277
    def init(self):
        self.clip_norm = 0.2

    def check_clip_result(self, out, out_clip):
        for u, v in zip(out, out_clip):
            norm = np.sqrt(np.sum(np.power(u, 2)))
            scale = self.clip_norm / np.maximum(self.clip_norm, norm)
            u = u * scale
278 279 280 281 282 283
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-05,
                atol=1e-08,
                err_msg='gradient clip by norm has wrong results!')
284

285
    # test whether the output is right when use grad_clip
286
    def test_gradient_clip(self):
287

zhouweiwei2014's avatar
zhouweiwei2014 已提交
288 289 290 291 292
        def func(params_grads):
            clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
            return clip(params_grads)

        self.clip_gradient = func
293 294 295 296
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
297
        clip = fluid.clip.GradientClipByNorm(self.clip_norm)
298
        x = fluid.default_main_program().global_block().create_parameter(
299
            name="x", shape=[2, 3], dtype="float32", need_clip=False)
300
        y = fluid.default_main_program().global_block().create_parameter(
301
            name="y", shape=[2, 3], dtype="float32", need_clip=False)
302 303 304 305 306 307

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
308
            "ClipGradByNorm: when grad is None, it shouldn't be returned by gradient clip!"
309 310 311
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
312
            "ClipGradByNorm: grad should not be clipped when filtered out!")
313 314 315


class TestGradientClipByValue(TestGradientClip):
316

317 318 319 320 321 322 323 324 325
    def init(self):
        self.max = 0.2
        self.min = 0.1

    def check_clip_result(self, out, out_clip):
        for i, v in enumerate(out):
            out[i] = np.clip(v, self.min, self.max)
        for u, v in zip(out, out_clip):
            u = np.clip(u, self.min, self.max)
326 327 328 329 330 331
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
                err_msg='gradient clip by value has wrong results!')
332

333
    # test whether the output is right when use grad_clip
334
    def test_gradient_clip(self):
335

zhouweiwei2014's avatar
zhouweiwei2014 已提交
336 337 338 339 340
        def func(params_grads):
            clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
            return clip(params_grads)

        self.clip_gradient = func
341 342 343 344
        self.check_gradient_clip(fluid.CPUPlace())

    # if grad is None or not need clip
    def test_none_grad(self):
345
        clip = fluid.clip.GradientClipByValue(self.max, self.min)
346
        x = fluid.default_main_program().global_block().create_parameter(
347
            name="x", shape=[2, 3], dtype="float32", need_clip=False)
348
        y = fluid.default_main_program().global_block().create_parameter(
349
            name="y", shape=[2, 3], dtype="float32", need_clip=False)
350 351 352 353 354 355

        # (x, None) should not be returned
        params_grads = [(x, None), (x, y)]
        params_grads = clip(params_grads)
        self.assertTrue(
            len(clip(params_grads)) == 1,
356
            "ClipGradByValue: when grad is None, it shouldn't be returned by gradient clip!"
357 358 359
        )
        self.assertTrue(
            params_grads[0][1].name == 'y',
360
            "ClipGradByValue: grad should not be clipped when filtered out!")
361 362 363


class TestDygraphGradientClip(unittest.TestCase):
364

365 366 367
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
            linear = fluid.dygraph.Linear(5, 5)
368 369
            inputs = fluid.layers.uniform_random([16, 5], min=-10,
                                                 max=10).astype('float32')
370 371 372 373
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            sgd_optimizer = fluid.optimizer.SGD(
374 375 376
                learning_rate=0.0,
                parameter_list=linear.parameters(),
                grad_clip=fluid.clip.GradientClipByGlobalNorm(0.1))
377 378 379 380 381 382 383
            self.check_clip_result(loss, sgd_optimizer)

    def check_clip_result(self, loss, optimizer):
        pass


class TestDygraphGradientClipByGlobalNorm(TestDygraphGradientClip):
384

385 386 387
    def setUp(self):
        self.clip_norm = 0.8
        self.clip1 = fluid.clip.GradientClipByGlobalNorm(
388
            clip_norm=self.clip_norm)
389 390 391 392 393
        self.clip2 = fluid.clip.GradientClipByGlobalNorm(
            clip_norm=self.clip_norm)

    def check_clip_result(self, loss, optimizer):
        # if grad is None
394 395 396 397
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"),
                                      name="x")
        y = fluid.dygraph.to_variable(np.array([3, 4]).astype("float32"),
                                      name="y")
398 399
        assert len(self.clip1([(x, x), (x, y), (x, None)])) == 2
        # get params and grads from network
400
        opt, params_grads = optimizer.minimize(loss)
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        _, grads = zip(*params_grads)
        params_grads = self.clip2(params_grads)
        _, grads_clip = zip(*params_grads)

        global_norm = 0
        for u in grads:
            u = u.numpy()
            global_norm += np.sum(np.power(u, 2))
        global_norm = np.sqrt(global_norm)

        global_norm_clip = 0
        for v in grads_clip:
            v = v.numpy()
            global_norm_clip += np.sum(np.power(v, 2))
        global_norm_clip = np.sqrt(global_norm_clip)

        a = np.minimum(global_norm, self.clip_norm)
        b = global_norm_clip
        self.assertTrue(
420
            np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
421
            "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
422 423 424 425
            % (a, b))


class TestDygraphGradientClipByNorm(TestDygraphGradientClip):
426

427 428
    def setUp(self):
        self.clip_norm = 0.8
429
        self.clip = fluid.clip.GradientClipByNorm(clip_norm=self.clip_norm)
430 431 432 433 434 435 436

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
        self.clip([(fluid.dygraph.to_variable(np.array([2, 3])), None)])
437
        opt, params_grads = optimizer.minimize(loss)
438 439 440 441 442 443 444 445 446 447 448
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)

        for u, v in zip(grads, grads_clip):
            u = u.numpy()
            v = v.numpy()
            a = np.sqrt(np.sum(np.power(u, 2)))
            a = np.minimum(a, self.clip_norm)
            b = np.sqrt(np.sum(np.power(v, 2)))
            self.assertTrue(
449
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
450
                "gradient clip by norm has wrong results, expetcd:%f, but received:%f"
451 452 453 454
                % (a, b))


class TestDygraphGradientClipByValue(TestDygraphGradientClip):
455

456 457 458
    def setUp(self):
        self.max = 0.2
        self.min = 0.1
459
        self.clip = fluid.clip.GradientClipByValue(max=self.max, min=self.min)
460 461 462 463 464 465

    def check_clip_result(self, loss, optimizer):
        # if grad is None
        x = fluid.dygraph.to_variable(np.array([2, 3]).astype("float32"))
        assert len(self.clip([(x, None)])) == 0
        # get params and grads from network
466
        opt, params_grads = optimizer.minimize(loss)
467 468 469 470 471 472
        _, grads = zip(*params_grads)
        params_grads = self.clip(params_grads)
        _, grads_clip = zip(*params_grads)
        for u, v in zip(grads, grads_clip):
            u = np.clip(u.numpy(), self.min, self.max)
            v = v.numpy()
473 474 475 476 477 478
            np.testing.assert_allclose(
                u,
                v,
                rtol=1e-06,
                atol=1e-08,
                err_msg='gradient clip by value has wrong results!')
479

C
chengduo 已提交
480

481
class SimpleNet(paddle.nn.Layer):
482

483 484 485 486 487 488 489 490 491 492 493 494
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.linear = paddle.nn.Linear(5, 5)
        self.batch_norm = paddle.nn.BatchNorm(5)

    def forward(self, x):
        x = self.linear(x)
        x = self.batch_norm(x)
        return x


class TestDygraphGradientClipFP16(unittest.TestCase):
495

496 497 498 499 500 501 502 503 504 505
    def test_gradient_clip(self):
        if fluid.core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                paddle.seed(10)
                model = SimpleNet()
                sgd_optimizer = paddle.optimizer.SGD(
                    learning_rate=0.0, parameters=model.parameters())
                model, sgd_optimizer = paddle.amp.decorate(
                    models=model, optimizers=sgd_optimizer, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
506 507
                inputs = fluid.layers.uniform_random([1, 5], min=-10,
                                                     max=10).astype('float32')
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
                with paddle.amp.auto_cast(level='O2'):
                    out = model(fluid.dygraph.to_variable(inputs))
                    loss = fluid.layers.reduce_mean(out)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.unscale_(sgd_optimizer)
                # before clip
                params_grads = []
                for param in model.parameters():
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        params_grads.append((param, param._grad_ivar()))
                _, grads = zip(*params_grads)
                # clip grads
                clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.8)
                params_grads = clip(params_grads)
                _, grads_clip = zip(*params_grads)
526
                # param update
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
                scaler.step(sgd_optimizer)
                scaler.update()

                global_norm = 0
                for u in grads:
                    u = u.numpy()
                    global_norm += np.sum(np.power(u, 2))
                global_norm = np.sqrt(global_norm)
                global_norm_clip = 0
                for v in grads_clip:
                    v = v.numpy()
                    global_norm_clip += np.sum(np.power(v, 2))
                global_norm_clip = np.sqrt(global_norm_clip)

                a = np.minimum(global_norm, 0.8)
                b = global_norm_clip
                self.assertTrue(
544
                    np.isclose(a=a, b=b, rtol=1e-3, atol=1e-8),
545
                    "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
546 547 548 549
                    % (a, b))


class TestDygraphGradientClipFP64(unittest.TestCase):
550

551 552
    def test_gradient_clip(self):
        with fluid.dygraph.guard():
553 554
            inputs = fluid.layers.uniform_random([16, 5], min=-10,
                                                 max=10).astype('float64')
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
            linear = fluid.dygraph.Linear(5, 5, dtype="float64")
            out = linear(fluid.dygraph.to_variable(inputs))
            loss = fluid.layers.reduce_mean(out)
            loss.backward()
            # before clip
            params_grads = []
            for param in linear.parameters():
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    params_grads.append((param, param._grad_ivar()))
            _, grads = zip(*params_grads)
            # clip grads
            clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=0.1)
            params_grads = clip(params_grads)
            _, grads_clip = zip(*params_grads)

            global_norm = 0
            for u in grads:
                u = u.numpy()
                global_norm += np.sum(np.power(u, 2))
            global_norm = np.sqrt(global_norm)

            global_norm_clip = 0
            for v in grads_clip:
                v = v.numpy()
                print(v)
                global_norm_clip += np.sum(np.power(v, 2))
            global_norm_clip = np.sqrt(global_norm_clip)
            print(global_norm_clip)

            a = np.minimum(global_norm, 0.1)
            b = global_norm_clip

            self.assertTrue(
590
                np.isclose(a=a, b=b, rtol=1e-6, atol=1e-8),
591
                "gradient clip by global norm has wrong results, expetcd:%f, but received:%f"
592 593 594
                % (a, b))


595
class TestPureFP16ClipGradByGlobalNorm(unittest.TestCase):
596

597 598 599 600 601 602 603 604 605 606
    def check_main(self, expected_has_cast_op):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            names = ["p0", "p1"]
            shapes = [[2, 3], [4, 5]]

            param_and_grads = []
            main_block = main_prog.global_block()
            for name, shape in zip(names, shapes):
607 608 609 610 611 612
                p = main_block.create_parameter(name=name,
                                                shape=shape,
                                                dtype='float16')
                g = main_block.create_parameter(name=p.name + '@GRAD',
                                                shape=p.shape,
                                                dtype=p.dtype)
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
                param_and_grads.append((p, g))

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            clip(param_and_grads)
            actual_has_cast = any(op.type == 'cast' for op in main_block.ops)
            self.assertEqual(actual_has_cast, expected_has_cast_op)

    def test_main(self):
        self.check_main(True)
        _allow_pure_fp16_global_norm_clip(True)
        self.check_main(False)
        _allow_pure_fp16_global_norm_clip(False)
        self.check_main(True)


C
chengduo 已提交
628 629
if __name__ == '__main__':
    unittest.main()