test_jacobian.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import paddle.compat as cpt
19
from utils import _compute_numerical_jacobian
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162


class TestJacobian(unittest.TestCase):
    @classmethod
    def setUpClass(self):
        self.shape = (4, 4)
        self.dtype = 'float32'
        self.np_dtype = np.float32
        self.numerical_delta = 1e-4
        self.rtol = 1e-3
        self.atol = 1e-3
        self.x = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.y = paddle.rand(shape=self.shape, dtype=self.dtype)

    def test_single_input_and_single_output(self):
        def func(x):
            return paddle.matmul(x, x)

        numerical_jacobian = _compute_numerical_jacobian(
            func, self.x, self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        jacobian = paddle.autograd.jacobian(func, self.x)
        assert np.allclose(jacobian.numpy(), numerical_jacobian[0][0],
                           self.rtol, self.atol)

    def test_single_input_and_multi_output(self):
        def func(x):
            return paddle.matmul(x, x), x * x

        numerical_jacobian = _compute_numerical_jacobian(
            func, self.x, self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        jacobian = paddle.autograd.jacobian(func, self.x)
        for i in range(len(jacobian)):
            assert np.allclose(jacobian[i].numpy(), numerical_jacobian[i][0],
                               self.rtol, self.atol)

    def test_multi_input_and_single_output(self):
        def func(x, y):
            return paddle.matmul(x, y)

        numerical_jacobian = _compute_numerical_jacobian(
            func, [self.x, self.y], self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        self.y.stop_gradient = False
        jacobian = paddle.autograd.jacobian(func, [self.x, self.y])
        for j in range(len(jacobian)):
            assert np.allclose(jacobian[j].numpy(), numerical_jacobian[0][j],
                               self.rtol, self.atol)

    def test_multi_input_and_multi_output(self):
        def func(x, y):
            return paddle.matmul(x, y), x * y

        numerical_jacobian = _compute_numerical_jacobian(
            func, [self.x, self.y], self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        self.y.stop_gradient = False
        jacobian = paddle.autograd.jacobian(func, [self.x, self.y])
        for i in range(len(jacobian)):
            for j in range(len(jacobian[0])):
                assert np.allclose(jacobian[i][j].numpy(),
                                   numerical_jacobian[i][j], self.rtol,
                                   self.atol)

    def test_allow_unused_false(self):
        def func(x, y):
            return paddle.matmul(x, x)

        try:
            self.x.stop_gradient = False
            self.y.stop_gradient = False
            jacobian = paddle.autograd.jacobian(func, [self.x, self.y])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_allow_unused_true(self):
        def func(x, y):
            return paddle.matmul(x, x)

        numerical_jacobian = _compute_numerical_jacobian(
            func, [self.x, self.y], self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        self.y.stop_gradient = False
        jacobian = paddle.autograd.jacobian(
            func, [self.x, self.y], allow_unused=True)
        assert np.allclose(jacobian[0].numpy(), numerical_jacobian[0][0],
                           self.rtol, self.atol)
        assert jacobian[1] is None

    def test_create_graph_false(self):
        def func(x, y):
            return paddle.matmul(x, y)

        numerical_jacobian = _compute_numerical_jacobian(
            func, [self.x, self.y], self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        self.y.stop_gradient = False
        jacobian = paddle.autograd.jacobian(func, [self.x, self.y])
        for j in range(len(jacobian)):
            assert jacobian[j].stop_gradient == True
            assert np.allclose(jacobian[j].numpy(), numerical_jacobian[0][j],
                               self.rtol, self.atol)
        try:
            paddle.grad(jacobian[0], [self.x, self.y])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("has no gradient") > 0

    def test_create_graph_true(self):
        def func(x, y):
            return paddle.matmul(x, y)

        numerical_jacobian = _compute_numerical_jacobian(
            func, [self.x, self.y], self.numerical_delta, self.np_dtype)
        self.x.stop_gradient = False
        self.y.stop_gradient = False
        jacobian = paddle.autograd.jacobian(
            func, [self.x, self.y], create_graph=True)
        for j in range(len(jacobian)):
            assert jacobian[j].stop_gradient == False
            assert np.allclose(jacobian[j].numpy(), numerical_jacobian[0][j],
                               self.rtol, self.atol)
        double_grad = paddle.grad(jacobian[0], [self.x, self.y])
        assert double_grad is not None


class TestJacobianFloat64(TestJacobian):
    @classmethod
    def setUpClass(self):
        self.shape = (4, 4)
        self.dtype = 'float64'
        self.np_dtype = np.float64
        self.numerical_delta = 1e-7
        self.rtol = 1e-7
        self.atol = 1e-7
        self.x = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.y = paddle.rand(shape=self.shape, dtype=self.dtype)


if __name__ == "__main__":
    unittest.main()